Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jun;84(11):3604–3608. doi: 10.1073/pnas.84.11.3604

Phosphorylation and proteolytic modification of specific cytoskeletal proteins in human neutrophils stimulated by phorbol 12-myristate 13-acetate.

S Pontremoli, E Melloni, M Michetti, B Sparatore, F Salamino, O Sacco, B L Horecker
PMCID: PMC304923  PMID: 3473471

Abstract

Stimulation of intact human neutrophils with phorbol 12-myristate 13-acetate results in the selective phosphorylation of two cytoskeletal protein components with molecular masses of 20 and 48 kDa. After phosphorylation the 48-kDa protein is no longer recovered as a component of the cytoskeletal fraction but is present as a fully soluble phosphoprotein. Phosphorylation of the 20-kDa protein (probably myosin light chains) signals a proteolytic conversion, catalyzed by calpain, to a smaller species having a molecular mass of approximately 15 kDa. Phosphorylation of both the 48- and 20-kDa proteins is related to the conversion of protein kinase C, also catalyzed by calpain, to the soluble fully active form. Leupeptin, an inhibitor of calpain, blocks both the phosphorylation of the target proteins and the proteolytic modification of the 20-kDa polypeptide. Thus, phosphorylation of cytoskeletal proteins and signal-directed proteolysis appear to be related processes that follow stimulation of human neutrophils by phorbol esters. The resulting changes in cytoskeletal organization may be involved in the expression of some neutrophil functions, such as exocytosis of specific granules.

Full text

PDF
3607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. C., Babior B. M. Phosphorylation of cytosolic proteins by resting and activated human neutrophils. Blood. 1984 Oct;64(4):883–890. [PubMed] [Google Scholar]
  2. Ashendel C. L. The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim Biophys Acta. 1985 Sep 9;822(2):219–242. doi: 10.1016/0304-4157(85)90009-7. [DOI] [PubMed] [Google Scholar]
  3. Bosman F., Opdenakker G., Van Damme J., Billiau A. Phorbol ester stimulates the synthesis and phosphorylation of a 48 kDa-intracellular protein in plasminogen activator secreting melanoma cells. Biochem Biophys Res Commun. 1986 May 29;137(1):263–272. doi: 10.1016/0006-291x(86)91205-2. [DOI] [PubMed] [Google Scholar]
  4. Endo T., Naka M., Hidaka H. Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin. Biochem Biophys Res Commun. 1982 Apr 14;105(3):942–948. doi: 10.1016/0006-291x(82)91061-0. [DOI] [PubMed] [Google Scholar]
  5. Fox J. E., Goll D. E., Reynolds C. C., Phillips D. R. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem. 1985 Jan 25;260(2):1060–1066. [PubMed] [Google Scholar]
  6. Gache Y., Landon F., Touitou H., Olomucki A. Susceptibility of platelet alpha-actinin to a Ca2+-activated neutral protease. Biochem Biophys Res Commun. 1984 Nov 14;124(3):877–881. doi: 10.1016/0006-291x(84)91039-8. [DOI] [PubMed] [Google Scholar]
  7. Graves C. B., McDonald J. M. Insulin and phorbol ester stimulate phosphorylation of a 40-kDa protein in adipocyte plasma membranes. J Biol Chem. 1985 Sep 15;260(20):11286–11292. [PubMed] [Google Scholar]
  8. Hama T., Huang K. P., Guroff G. Protein kinase C as a component of a nerve growth factor-sensitive phosphorylation system in PC12 cells. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2353–2357. doi: 10.1073/pnas.83.8.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayakawa T., Suzuki K., Suzuki S., Andrews P. C., Babior B. M. A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease. J Biol Chem. 1986 Jul 15;261(20):9109–9115. [PubMed] [Google Scholar]
  10. Horne W. C., Leto T. L., Marchesi V. T. Differential phosphorylation of multiple sites in protein 4.1 and protein 4.9 by phorbol ester-activated and cyclic AMP-dependent protein kinases. J Biol Chem. 1985 Aug 5;260(16):9073–9076. [PubMed] [Google Scholar]
  11. Huang C. K., Hill J. M., Jr, Bormann B. J., Mackin W. M., Becker E. L. Chemotactic factors induced vimentin phosphorylation in rabbit peritoneal neutrophil. J Biol Chem. 1984 Feb 10;259(3):1386–1389. [PubMed] [Google Scholar]
  12. Inoue M., Kishimoto A., Takai Y., Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem. 1977 Nov 10;252(21):7610–7616. [PubMed] [Google Scholar]
  13. Irita K., Takeshige K., Minakami S. Protein phosphorylation in intact pig leukocytes. Biochim Biophys Acta. 1984 Sep 14;805(1):44–52. doi: 10.1016/0167-4889(84)90035-1. [DOI] [PubMed] [Google Scholar]
  14. Ishizaki Y., Tashiro T., Kurokawa M. A calcium-activated protease which preferentially degrades the 160-kDa component of the neurofilament triplet. Eur J Biochem. 1983 Mar 1;131(1):41–45. doi: 10.1111/j.1432-1033.1983.tb07229.x. [DOI] [PubMed] [Google Scholar]
  15. Kaibuchi K., Takai Y., Sawamura M., Hoshijima M., Fujikura T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem. 1983 Jun 10;258(11):6701–6704. [PubMed] [Google Scholar]
  16. Kambayashi J., Kajiwara Y., Sakon M., Ohshiro T., Mori T. Possible participation of calpain in myosin light chain phosphorylation of human platelets. Biochem Int. 1986 Oct;13(4):571–578. [PubMed] [Google Scholar]
  17. Kawamoto S., Hidaka H. Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins. Biochem Biophys Res Commun. 1984 Feb 14;118(3):736–742. doi: 10.1016/0006-291x(84)91456-6. [DOI] [PubMed] [Google Scholar]
  18. Kishimoto A., Kajikawa N., Shiota M., Nishizuka Y. Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease. J Biol Chem. 1983 Jan 25;258(2):1156–1164. [PubMed] [Google Scholar]
  19. Kosaki G., Tsujinaka T., Kambayashi J., Morimoto K., Yamamoto K., Yamagami K., Sobue K., Kakiuchi S. Specific cleavage of calmodulin-binding proteins by low Ca2+-requiring form of Ca2+-activated neutral protease in human platelets. Biochem Int. 1983 Jun;6(6):767–775. [PubMed] [Google Scholar]
  20. Kruskal B. A., Shak S., Maxfield F. R. Spreading of human neutrophils is immediately preceded by a large increase in cytoplasmic free calcium. Proc Natl Acad Sci U S A. 1986 May;83(9):2919–2923. doi: 10.1073/pnas.83.9.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LeVine H., Sahyoun N. E. Involvement of fodrin-binding proteins in the structure of the neuronal postsynaptic density and regulation by phosphorylation. Biochem Biophys Res Commun. 1986 Jul 16;138(1):59–65. doi: 10.1016/0006-291x(86)90246-9. [DOI] [PubMed] [Google Scholar]
  22. Litchfield D. W., Ball E. H. Phosphorylation of the cytoskeletal protein talin by protein kinase C. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1276–1283. doi: 10.1016/0006-291x(86)90388-8. [DOI] [PubMed] [Google Scholar]
  23. Lyons R. M., Shaw J. O. Interaction of Ca2+ and protein phosphorylation in the rabbit platelet release reaction. J Clin Invest. 1980 Feb;65(2):242–255. doi: 10.1172/JCI109666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lyons R. M., Stanford N., Majerus P. W. Thrombin-induced protein phosphorylation in human platelets. J Clin Invest. 1975 Oct;56(4):924–936. doi: 10.1172/JCI108172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malik M. N., Fenko M. D., Iqbal K., Wisniewski H. M. Purification and characterization of two forms of Ca2+-activated neutral protease from calf brain. J Biol Chem. 1983 Jul 25;258(14):8955–8962. [PubMed] [Google Scholar]
  26. Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Horecker B. L. The involvement of calpain in the activation of protein kinase C in neutrophils stimulated by phorbol myristic acid. J Biol Chem. 1986 Mar 25;261(9):4101–4105. [PubMed] [Google Scholar]
  27. Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Salamino F., Horecker B. L. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+ and its activation by a Ca2+-requiring proteinase. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6435–6439. doi: 10.1073/pnas.82.19.6435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Melloni E., Pontremoli S., Salamino F., Sparatore B., Michetti M., Sacco O., Horecker B. L. ATP induces the release of a neutral serine proteinase and enhances the production of superoxide anion in membranes from phorbol ester-activated neutrophils. J Biol Chem. 1986 Sep 5;261(25):11437–11439. [PubMed] [Google Scholar]
  29. Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
  30. Nishikawa M., Hidaka H., Adelstein R. S. Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase. The effect on actin-activated MgATPase activity. J Biol Chem. 1983 Dec 10;258(23):14069–14072. [PubMed] [Google Scholar]
  31. Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
  32. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  33. O'Halloran T., Beckerle M. C., Burridge K. Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature. 1985 Oct 3;317(6036):449–451. doi: 10.1038/317449a0. [DOI] [PubMed] [Google Scholar]
  34. Pho D. B., Desbruyères E., Der Terrossian E., Olomucki A. Cytoskeletons of ADP- and thrombin-stimulated blood platelets. Presence of a caldesmon-like protein, alpha-actinin and gelsolin at different steps of the stimulation. FEBS Lett. 1986 Jun 23;202(1):117–121. doi: 10.1016/0014-5793(86)80660-3. [DOI] [PubMed] [Google Scholar]
  35. Pontremoli S., Melloni E., Michetti M., Sacco O., Salamino F., Sparatore B., Horecker B. L. Biochemical responses in activated human neutrophils mediated by protein kinase C and a Ca2+-requiring proteinase. J Biol Chem. 1986 Jun 25;261(18):8309–8313. [PubMed] [Google Scholar]
  36. Pontremoli S., Melloni E., Michetti M., Sacco O., Sparatore B., Salamino F., Damiani G., Horecker B. L. Cytolytic effects of neutrophils: role for a membrane-bound neutral proteinase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1685–1689. doi: 10.1073/pnas.83.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pontremoli S., Melloni E., Michetti M., Sparatore B., Salamino F., Sacco O., Horecker B. L. Phosphorylation by protein kinase C of a 20-kDa cytoskeletal polypeptide enhances its susceptibility to digestion by calpain. Proc Natl Acad Sci U S A. 1987 Jan;84(2):398–401. doi: 10.1073/pnas.84.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Sacco O., Horecker B. L. Activation of NADPH oxidase and phosphorylation of membrane proteins in human neutrophils: coordinate inhibition by a surface antigen-directed monoclonal antibody. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1121–1126. doi: 10.1016/0006-291x(86)90751-5. [DOI] [PubMed] [Google Scholar]
  39. Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Sacco O., Horecker B. L. Phosphorylation of proteins in human neutrophils activated with phorbol myristate acetate or with chemotactic factor. Arch Biochem Biophys. 1986 Oct;250(1):23–29. doi: 10.1016/0003-9861(86)90697-1. [DOI] [PubMed] [Google Scholar]
  40. Pontremoli S., Melloni E., Sparatore B., Michetti M., Horecker B. L. A dual role for the Ca2+-requiring proteinase in the degradation of hemoglobin by erythrocyte membrane proteinases. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6714–6717. doi: 10.1073/pnas.81.21.6714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pontremoli S., Sparatore B., Melloni E., Michetti M., Horecker B. L. Activation by hemoglobin of the Ca2+-requiring neutral proteinase of human erythrocytes: structural requirements. Biochem Biophys Res Commun. 1984 Aug 30;123(1):331–337. doi: 10.1016/0006-291x(84)90417-0. [DOI] [PubMed] [Google Scholar]
  42. Pontremoli S., Sparatore B., Salamino F., Michetti M., Sacco O., Melloni E. Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes. Biochem Int. 1985 Jul;11(1):35–44. [PubMed] [Google Scholar]
  43. Rozengurt E., Rodriguez-Pena M., Smith K. A. Phorbol esters, phospholipase C, and growth factors rapidly stimulate the phosphorylation of a Mr 80,000 protein in intact quiescent 3T3 cells. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7244–7248. doi: 10.1073/pnas.80.23.7244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schneider C., Zanetti M., Romeo D. Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils. FEBS Lett. 1981 May 5;127(1):4–8. doi: 10.1016/0014-5793(81)80327-4. [DOI] [PubMed] [Google Scholar]
  45. Southwick F. S., Stossel T. P. Contractile proteins in leukocyte function. Semin Hematol. 1983 Oct;20(4):305–321. [PubMed] [Google Scholar]
  46. Umekawa H., Hidaka H. Phosphorylation of caldesmon by protein kinase C. Biochem Biophys Res Commun. 1985 Oct 15;132(1):56–62. doi: 10.1016/0006-291x(85)90987-8. [DOI] [PubMed] [Google Scholar]
  47. Werth D. K., Niedel J. E., Pastan I. Vinculin, a cytoskeletal substrate of protein kinase C. J Biol Chem. 1983 Oct 10;258(19):11423–11426. [PubMed] [Google Scholar]
  48. Werth D. K., Pastan I. Vinculin phosphorylation in response to calcium and phorbol esters in intact cells. J Biol Chem. 1984 Apr 25;259(8):5264–5270. [PubMed] [Google Scholar]
  49. White J. R., Huang C. K., Hill J. M., Jr, Naccache P. H., Becker E. L., Sha'afi R. I. Effect of phorbol 12-myristate 13-acetate and its analogue 4 alpha-phorbol 12,13-didecanoate on protein phosphorylation and lysosomal enzyme release in rabbit neutrophils. J Biol Chem. 1984 Jul 10;259(13):8605–8611. [PubMed] [Google Scholar]
  50. White J. R., Naccache P. H., Sha'afi R. I. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J Biol Chem. 1983 Nov 25;258(22):14041–14047. [PubMed] [Google Scholar]
  51. Yassin R., Shefcyk J., White J. R., Tao W., Volpi M., Molski T. F., Naccache P. H., Feinstein M. B., Sha'afi R. I. Effects of chemotactic factors and other agents on the amounts of actin and a 65,000-mol-wt protein associated with the cytoskeleton of rabbit and human neutrophils. J Cell Biol. 1985 Jul;101(1):182–188. doi: 10.1083/jcb.101.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zimmerman U. P., Schlaepfer W. W. Multiple forms of Ca-activated protease from rat brain and muscle. J Biol Chem. 1984 Mar 10;259(5):3210–3218. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES