Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jun;84(12):4342–4345. doi: 10.1073/pnas.84.12.4342

N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes.

H T Cline, E A Debski, M Constantine-Paton
PMCID: PMC305081  PMID: 2884663

Abstract

The optic tecta of surgically produced three-eyed tadpoles were chronically exposed to the N-methyl-D-aspartate (NMDA) receptor antagonist aminophosphonovaleric acid (APV), or to NMDA itself, to assess the influence of NMDA receptor/channels on the eye-specific segregation of retinal ganglion cell (RGC) terminals that occurs whenever two retinas innervate one tectal lobe. Exposure of the tectum to the active isomer of APV produces desegregation of the RGC terminals without blocking electrical activity in the afferents or altering their terminal arbor morphology. Exposure to the inactive isomer of APV causes no perturbation of the normal stripe pattern. APV-induced desegregation is completely reversible within 2 weeks of removal of the APV. In addition, exposure of the optic tectum to NMDA results in stripes with sharper borders and fewer forks and fusions than untreated animals. These results suggest that the NMDA receptor/channel plays a role in eye-specific segregation in the three-eyed tadpole.

Full text

PDF
4345

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnett D. W. Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp Brain Res. 1978 May 12;32(1):49–53. doi: 10.1007/BF00237389. [DOI] [PubMed] [Google Scholar]
  2. Beach D. H., Jacobson M. Patterns of cell proliferation in the retina of the clawed frog during development. J Comp Neurol. 1979 Feb 1;183(3):603–613. doi: 10.1002/cne.901830308. [DOI] [PubMed] [Google Scholar]
  3. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. C., Holland R. L., Hopkins W. G. Motor nerve sprouting. Annu Rev Neurosci. 1981;4:17–42. doi: 10.1146/annurev.ne.04.030181.000313. [DOI] [PubMed] [Google Scholar]
  5. Chapman B., Jacobson M. D., Reiter H. O., Stryker M. P. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature. 1986 Nov 13;324(6093):154–156. doi: 10.1038/324154a0. [DOI] [PubMed] [Google Scholar]
  6. Cohan C. S., Kater S. B. Suppression of neurite elongation and growth cone motility by electrical activity. Science. 1986 Jun 27;232(4758):1638–1640. doi: 10.1126/science.3715470. [DOI] [PubMed] [Google Scholar]
  7. Constantine-Paton M., Ferrari-Eastman P. Pre- and postsynaptic correlates of interocular competition and segregation in the frog. J Comp Neurol. 1987 Jan 8;255(2):178–195. doi: 10.1002/cne.902550203. [DOI] [PubMed] [Google Scholar]
  8. Constantine-Paton M., Law M. I. Eye-specific termination bands in tecta of three-eyed frogs. Science. 1978 Nov 10;202(4368):639–641. doi: 10.1126/science.309179. [DOI] [PubMed] [Google Scholar]
  9. Cull-Candy S. G., Usowicz M. M. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature. 1987 Feb 5;325(6104):525–528. doi: 10.1038/325525a0. [DOI] [PubMed] [Google Scholar]
  10. Davies J., Watkins J. C. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 1982 Mar 11;235(2):378–386. doi: 10.1016/0006-8993(82)91017-4. [DOI] [PubMed] [Google Scholar]
  11. Dubin M. W., Stark L. A., Archer S. M. A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. J Neurosci. 1986 Apr;6(4):1021–1036. doi: 10.1523/JNEUROSCI.06-04-01021.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujisawa H., Watanabe K., Tani N., Ibata Y. Retinotopic analysis of fiber pathways is amphibians. I. The adult newt Cynops pyrrhogaster. Brain Res. 1981 Feb 9;206(1):9–20. doi: 10.1016/0006-8993(81)90096-2. [DOI] [PubMed] [Google Scholar]
  13. Gaze R. M., Keating M. J., Ostberg A., Chung S. H. The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retino-tectal projection. J Embryol Exp Morphol. 1979 Oct;53:103–143. [PubMed] [Google Scholar]
  14. Harris E. W., Ganong A. H., Cotman C. W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 1984 Dec 3;323(1):132–137. doi: 10.1016/0006-8993(84)90275-0. [DOI] [PubMed] [Google Scholar]
  15. Herron C. E., Lester R. A., Coan E. J., Collingridge G. L. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature. 1986 Jul 17;322(6076):265–268. doi: 10.1038/322265a0. [DOI] [PubMed] [Google Scholar]
  16. Jahr C. E., Stevens C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 1987 Feb 5;325(6104):522–525. doi: 10.1038/325522a0. [DOI] [PubMed] [Google Scholar]
  17. Kelso S. R., Ganong A. H., Brown T. H. Hebbian synapses in hippocampus. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5326–5330. doi: 10.1073/pnas.83.14.5326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai Y., Nairn A. C., Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4253–4257. doi: 10.1073/pnas.83.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Langdon R. B., Freeman J. A. Antagonists of glutaminergic neurotransmission block retinotectal transmission in goldfish. Brain Res. 1986 Nov 19;398(1):169–174. doi: 10.1016/0006-8993(86)91263-1. [DOI] [PubMed] [Google Scholar]
  20. Law M. I., Constantine-Paton M. Anatomy and physiology of experimentally produced striped tecta. J Neurosci. 1981 Jul;1(7):741–759. doi: 10.1523/JNEUROSCI.01-07-00741.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., Barker J. L. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. 1986 May 29-Jun 4Nature. 321(6069):519–522. doi: 10.1038/321519a0. [DOI] [PubMed] [Google Scholar]
  22. Malinow R., Miller J. P. Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature. 1986 Apr 10;320(6062):529–530. doi: 10.1038/320529a0. [DOI] [PubMed] [Google Scholar]
  23. Mastronarde D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J Neurophysiol. 1983 Feb;49(2):303–324. doi: 10.1152/jn.1983.49.2.303. [DOI] [PubMed] [Google Scholar]
  24. Mastronarde D. N. Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. J Neurophysiol. 1983 Feb;49(2):325–349. doi: 10.1152/jn.1983.49.2.325. [DOI] [PubMed] [Google Scholar]
  25. Mastronarde D. N. Interactions between ganglion cells in cat retina. J Neurophysiol. 1983 Feb;49(2):350–365. doi: 10.1152/jn.1983.49.2.350. [DOI] [PubMed] [Google Scholar]
  26. Meyer R. L. Tetrodotoxin blocks the formation of ocular dominance columns in goldfish. Science. 1982 Nov 5;218(4572):589–591. doi: 10.1126/science.7123262. [DOI] [PubMed] [Google Scholar]
  27. Meyer R. L. Tetrodotoxin inhibits the formation of refined retinotopography in goldfish. Brain Res. 1983 Feb;282(3):293–298. doi: 10.1016/0165-3806(83)90068-8. [DOI] [PubMed] [Google Scholar]
  28. Miller S. G., Kennedy M. B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. doi: 10.1016/0092-8674(86)90008-5. [DOI] [PubMed] [Google Scholar]
  29. Morris R. G., Anderson E., Lynch G. S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. 1986 Feb 27-Mar 5Nature. 319(6056):774–776. doi: 10.1038/319774a0. [DOI] [PubMed] [Google Scholar]
  30. Reh T. A., Constantine-Paton M. Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J Neurosci. 1985 May;5(5):1132–1143. doi: 10.1523/JNEUROSCI.05-05-01132.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reh T. A., Constantine-Paton M. Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens. J Neurosci. 1984 Feb;4(2):442–457. doi: 10.1523/JNEUROSCI.04-02-00442.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roberts P. J., Yates R. A. Tectal deafferentation in the frog: selective loss of L-glutamate and gamma-aminobutyrate. Neuroscience. 1976;1(5):371–374. doi: 10.1016/0306-4522(76)90129-9. [DOI] [PubMed] [Google Scholar]
  33. Sastry B. R., Goh J. W., Auyeung A. Associative induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus. Science. 1986 May 23;232(4753):988–990. doi: 10.1126/science.3010459. [DOI] [PubMed] [Google Scholar]
  34. Silberstein G. B., Daniel C. W. Elvax 40P implants: sustained, local release of bioactive molecules influencing mammary ductal development. Dev Biol. 1982 Sep;93(1):272–278. doi: 10.1016/0012-1606(82)90259-7. [DOI] [PubMed] [Google Scholar]
  35. Stent G. S. A physiological mechanism for Hebb's postulate of learning. Proc Natl Acad Sci U S A. 1973 Apr;70(4):997–1001. doi: 10.1073/pnas.70.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stryker M. P., Harris W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci. 1986 Aug;6(8):2117–2133. doi: 10.1523/JNEUROSCI.06-08-02117.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES