Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Feb;89(2):343–354. doi: 10.1128/jb.89.2.343-354.1965

Biochemical Studies of the Smooth-Rough Mutation in Salmonella minnesota

O Lüderitz 1,2, H J Risse 1,2, H Schulte-Holthausen 1,2,1, J L Strominger 1,2,2, I W Sutherland 1,2, O Westphal 1,2
PMCID: PMC305514  PMID: 14255700

Abstract

Lüderitz, O. (Max-Planck-Institut für Immunbiologie, Frieburg, Germany), H. J. Risse, H. Schulte-Holthausen, J. L. Strominger, I. W. Sutherland, and O. Westphal. Biochemical studies of the smooth-rough mutation in Salmonella minnesota. J. Bacteriol. 89:343–354. 1965.—A comparative study of the O antigen from the smooth strain of Salmonella minnesota and of the two R antigens derived from two rough forms of S. minnesota (strains R 60 and R 345) has been carried out. The O-specific polysaccharide of the smooth form is composed of heptose, galactose, glucose, glucosamine, galactosamine, and ketodeoxyoctanoate (KDO). R 60 polysaccharide contains KDO, heptose, galactose, glucose, and glucosamine, whereas the R 345 polysaccharide contains only KDO, heptose, galactose, and glucose. Serologically, R 345 and R 60 polysaccharides belong to serogroups R I and R II, respectively. Enzymatic studies revealed that the acetylgalactosamine-synthesizing enzyme, uridine diphosphate-N-acetylglucosamine-4-epimerase, is present in wild-type and R 345 cells but is absent from R 60 cells. Two distinct polysaccharides were obtained from the R 345 cells: a polysaccharide derived from the R antigen (lipopolysaccharide) containing no galactosamine and exerting R specificity, and a soluble polysaccharide containing galactosamine and exerting O specificity. The structure of O and R antigens is discussed, together with the general significance of the results for the biosynthesis of the O antigens of the genus Salmonella.

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKMANN I., LUEDERITZ O., WESTPHAL O. ZUR IMMUNCHEMIE DER SOMATISCHEN ANTIGENE VON ENTEROBACTERIACEAE. IX. SEROLOGISCHE TYPISIERUNG VON SALMONELLA-R-ANTIGENEN. Biochem Z. 1964 May 22;339:401–415. [PubMed] [Google Scholar]
  2. BECKMANN I., SUBBAIAH T. V., STOCKER B. A. ROUGH MUTANTS OF SALMONELLA TYPHIMURIUM. II. SEROLOGICAL AND CHEMICAL INVESTIGATIONS. Nature. 1964 Mar 28;201:1299–1301. doi: 10.1038/2011299a0. [DOI] [PubMed] [Google Scholar]
  3. CARDINI C. E., LELOIR L. F. Enzymatic formation of acetylgalactosamine. J Biol Chem. 1957 Mar;225(1):317–324. [PubMed] [Google Scholar]
  4. DAVIES D. A., MORGAN W. T., RECORD B. R. Studies in immunochemistry. 15. The specific polysaccharide of the dominant 'O' somatic antigen of Shigella dysenteriae. Biochem J. 1955 Jun;60(2):290–303. doi: 10.1042/bj0600290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVIES D. A. Polysaccharides of gram-negative bacteria. Adv Carbohydr Chem. 1960;15:271–340. doi: 10.1016/s0096-5332(08)60190-3. [DOI] [PubMed] [Google Scholar]
  6. Edstrom R. D., Heath E. C. Sugar nucleotide transferases in Escherichia coli lipopolysaccharide biosynthesis. Biochem Biophys Res Commun. 1964 Aug 11;16(6):576–581. doi: 10.1016/0006-291x(64)90195-0. [DOI] [PubMed] [Google Scholar]
  7. FISCHER F. G., DORFEL H. Die papierchromatographische Trennung und Bestimmung der Uronsäuren. Hoppe Seylers Z Physiol Chem. 1955 Sep 2;301(4-6):224–234. [PubMed] [Google Scholar]
  8. FROMME I., LUDERITZ O., NOWOTNY A., WESTPHAL O. Chemische Analyse des Lipopolysaccharids aus Salmonella abortus equi. Pharm Acta Helv. 1958 Aug-Oct;33(8-10):391–400. [PubMed] [Google Scholar]
  9. FUKASAWA T., JOKURA K., KURAHASHI K. A new enzymic defect of galactose metabolism in Escherichia coli K-12 mutants. Biochem Biophys Res Commun. 1962 Apr 3;7:121–125. doi: 10.1016/0006-291x(62)90158-4. [DOI] [PubMed] [Google Scholar]
  10. Freeman G. G. The preparation and properties of a specific polysaccharide from Bact. typhosum Ty(2): With an addendum by J. St L. Philpot, From the Department of Biochemistry, Oxford. Biochem J. 1942 Apr;36(3-4):340–356. doi: 10.1042/bj0360340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GLASER L. The biosynthesis of N-acetylgalactosamine. J Biol Chem. 1959 Nov;234:2801–2805. [PubMed] [Google Scholar]
  12. KAUFFMANN F., KRUEGER L., LUEDERITZ O., WESTPHAL O. [On the immunochemistry of the O-antigen of Enterobacteriaceae. VI. Comparison of the sugar components of polysaccharides from S and R forms of Salmonella]. Zentralbl Bakteriol. 1961 May;182:57–66. [PubMed] [Google Scholar]
  13. KAUFFMANN F., LUEDERITZ O., STIERLIN H., WESTPHAL O. [On the immunochemistry of O antigens of Enterobacteriaceae. I. Analysis of the sugar component of Salmonella O antigens]. Zentralbl Bakteriol. 1960 May;178:442–458. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. LUEDERITZ O., BECKMANN I., WESTPHAL O. ZUR IMMUNCHEMIE DER SOMATISCHEN ANTIGENE VON ENTEROBACTERIACEAE. X. R-SPEZIFISCHE STRUKTUREN IN SALMONELLA-O-ANTIGENEN. Biochem Z. 1964 May 22;339:416–435. [PubMed] [Google Scholar]
  17. LUEDERITZ O., KAUFFMANN F., STIERLIN H., WESTPHAL O. [On the immunochemistry of O antigens of enterobacteriaceae. II. Comparison of the sugar componet of the S. R and T forms of Salmonella]. Zentralbl Bakteriol. 1960 Jun;179:180–186. [PubMed] [Google Scholar]
  18. LUEDERITZ O., SIMMONS D. A., WESTPHAL O., STROMINGER J. L. A SPECIFIC MICRODETERMINATION OF GLUCOSAMINE AND THE ANALYSIS OF OTHER HEXOSAMINES IN THE PRESENCE OF GLUCOSAMINE. Anal Biochem. 1964 Nov;9:263–271. doi: 10.1016/0003-2697(64)90184-8. [DOI] [PubMed] [Google Scholar]
  19. NATHENSON S. G., STROMINGER J. L. ENZYMATIC SYNTHESIS OF N-ACETYLGLUCOSAMINYLRIBITOL LINKAGES IN TEICHOIC ACID FROM STAPHYLOCOCCUS AUREUS, STRAIN COPENHAGEN. J Biol Chem. 1963 Oct;238:3161–3169. [PubMed] [Google Scholar]
  20. NIKAIDO H. Galactose-sensitive mutants of Salmonella. I. Metabolism of galactose. Biochim Biophys Acta. 1961 Apr 15;48:460–469. doi: 10.1016/0006-3002(61)90044-0. [DOI] [PubMed] [Google Scholar]
  21. NIKAIDO H., MIKAIDO K., SUBBAIAH T. V., STOCKER B. A. ROUGH MUTANTS OF SALMONELLA TYPHIMURIUM. III. ENZYMATIC SYNTHESIS OF NUCLEOTIDE-SUGAR COMPOUNDS. Nature. 1964 Mar 28;201:1301–1302. doi: 10.1038/2011301a0. [DOI] [PubMed] [Google Scholar]
  22. NIKAIDO H. Studies on the biosynthesis of cell-wall polysaccharide in mutant strains of Salmonella. I. Proc Natl Acad Sci U S A. 1962 Aug;48:1337–1341. doi: 10.1073/pnas.48.8.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. OSBORN M. J., ROSEN S. M., ROTHFIELD L., HORECKER B. L. Biosynthesis of bacterial lipopolysaccharide. I. Enzymatic incorporation of galactose in a mutant strain of Salmonella. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1831–1838. doi: 10.1073/pnas.48.10.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. OSBORN M. J. STUDIES ON THE GRAM-NEGATIVE CELL WALL. I. EVIDENCE FOR THE ROLE OF 2-KETO- 3-DEOXYOCTONATE IN THE LIPOPOLYSACCHARIDE OF SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1963 Sep;50:499–506. doi: 10.1073/pnas.50.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Osborn M. J., D'Ari L. Enzymatic incorporation of N-acetylglucosamine into cell wall lipopolysaccharide in a mutant strain of Salmonella typhimurium. Biochem Biophys Res Commun. 1964 Aug 11;16(6):568–575. doi: 10.1016/0006-291x(64)90194-9. [DOI] [PubMed] [Google Scholar]
  26. SCHLOSSHARDT J. UNTERSUCHUNGEN UEBER DIE ENTSTEHUNG VON MUTAGENEN IM ZELLSTOFFWECHSEL UND IHRE ROLLE IM S-R-FORMENWECHSEL BEI SALMONELLEN. Zentralbl Bakteriol Orig. 1964 Feb;192:54–66. [PubMed] [Google Scholar]
  27. STROMINGER J. L., PARK J. T., THOMPSON R. E. Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem. 1959 Dec;234:3263–3268. [PubMed] [Google Scholar]
  28. STROMINGER J. L., SMITH M. S. The preparation of uridine diphosphoacetyl-galactosamine. J Biol Chem. 1959 Jul;234(7):1828–1829. [PubMed] [Google Scholar]
  29. SUBBAIAH T. V., STOCKER B. A. ROUGH MUTANTS OF SALMONELLA TYPHIMURIUM. I. GENETICS. Nature. 1964 Mar 28;201:1298–1299. doi: 10.1038/2011298a0. [DOI] [PubMed] [Google Scholar]
  30. SUNDARARAJAN T. A., RAPIN A. M., KALCKAR H. M. Biochemical observations on E. coli mutants defective in uridine diphosphoglucose. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2187–2193. doi: 10.1073/pnas.48.12.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WARAVDEKAR V. S., SASLAW L. D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem. 1959 Aug;234(8):1945–1950. [PubMed] [Google Scholar]
  32. WASSERMAN E., LEVINE L. Quantitative micro-complement fixation and its use in the study of antigenic structure by specific antigen-antibody inhibition. J Immunol. 1961 Sep;87:290–295. [PubMed] [Google Scholar]
  33. WESTPHAL O., NOWOTNY A., LUDERITZ O., HURNI H., EICHENBERGER E., SCHONHOLZER G. Die Bedeutung der Lipoid-Komponente (Lipoid A) für die biologischen Wirkungen bakterieller Endotoxine (Lipopolysaccharide). Pharm Acta Helv. 1958 Aug-Oct;33(8-10):401–411. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES