Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Sep 25;15(18):7451–7462. doi: 10.1093/nar/15.18.7451

Synthesis and properties of oligodeoxynucleotides with an AP site at a preselected position.

G R Stuart 1, R W Chambers 1
PMCID: PMC306260  PMID: 3658699

Abstract

A general synthesis of a deoxyoligonucleotide with an AP site at a preselected sequence is described. Deoxyuridine is introduced during routine oligonucleotide syntheses of d(TTTUTTTT) and d(AAAAGTTUAAAACAT). Treatment with uracil DNA-glycosylase produces d(TTTrTTTT), where r = deoxyribose, and d(AAAAGTTprpAAAACAT). KM and Vmax are: d(TTTUTTTT), 7.3 X 10(-9)M and 2.0 X 10(-9) mumol/min; d(AAAAGTTUAAAACAT), 1.5 X 10(-8) M and 6.4 X 10(-9) mumol/min. Both d(AAAAGTTprpAAAACAT) and d(TTTprpTTTT) undergo rapid beta-elimination in 1 M piperidine at 25 degrees giving two oligonucleotide fragments, d(AAAAGTTpr') and d(pAAAACAT), where r' = -O-CH2-CHOH-CH=CH-CHO (or its hemiacetal form). The fragment, d(AAAAGTTpr'), which can be isolated by reverse phase chromatography, is resistant to the 3'----5' exonuclease activity of snake venom phosphodiesterase. Endonucleolytic hydrolysis of the penultimate phosphodiester occurs removing pTpr' and generating a normal 3'-OH end. In 1 M piperidine at 90 degrees two beta-eliminations occur producing the oligonucleotides d(AAAAGTTp) and d(pAAAACAT) from d(AAAAGTTprpAAAACAT); d(TTTp) and d(pTTTT) from d(TTTprpTTTT).

Full text

PDF
7452

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly V., Verly W. G. Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochem J. 1987 Mar 1;242(2):565–572. doi: 10.1042/bj2420565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhanot O. S., Khan S. A., Chambers R. W. A new system for studying molecular mechanisms of mutation by carcinogens. J Biol Chem. 1979 Dec 25;254(24):12684–12693. [PubMed] [Google Scholar]
  3. Borowy-Borowski H., Chambers R. W. A study of side reactions occurring during synthesis of oligodeoxynucleotides containing O6-alkyldeoxyguanosine residues at preselected sites. Biochemistry. 1987 May 5;26(9):2465–2471. doi: 10.1021/bi00383a010. [DOI] [PubMed] [Google Scholar]
  4. Chambers R. W., Sledziewska-Gojska E., Hirani-Hojatti S., Borowy-Borowski H. uvrA and recA mutations inhibit a site-specific transition produced by a single O6-methylguanine in gene G of bacteriophage phi X174. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7173–7177. doi: 10.1073/pnas.82.21.7173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delort A. M., Duplaa A. M., Molko D., Teoule R., Leblanc J. P., Laval J. Excision of uracil residues in DNA: mechanism of action of Escherichia coli and Micrococcus luteus uracil-DNA glycosylases. Nucleic Acids Res. 1985 Jan 25;13(2):319–335. doi: 10.1093/nar/13.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gossard F., Verly W. G. Properties of the main endonuclease specific for apurinic sites of Escherichia coli (endonuclease VI). Mechanism of apurinic site excision from DNA. Eur J Biochem. 1978 Jan 16;82(2):321–332. doi: 10.1111/j.1432-1033.1978.tb12026.x. [DOI] [PubMed] [Google Scholar]
  7. Hutchison C. A., 3rd, Phillips S., Edgell M. H., Gillam S., Jahnke P., Smith M. Mutagenesis at a specific position in a DNA sequence. J Biol Chem. 1978 Sep 25;253(18):6551–6560. [PubMed] [Google Scholar]
  8. Katcher H. L., Wallace S. S. Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry. 1983 Aug 16;22(17):4071–4081. doi: 10.1021/bi00286a013. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Schaaper R. M., Loeb L. A. Depurination-induced infidelity of deoxyribonucleic acid synthesis with purified deoxyribonucleic acid replication proteins in vitro. Biochemistry. 1983 May 10;22(10):2378–2384. doi: 10.1021/bi00279a012. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
  11. Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
  12. Loeb L. A. Apurinic sites as mutagenic intermediates. Cell. 1985 Mar;40(3):483–484. doi: 10.1016/0092-8674(85)90191-6. [DOI] [PubMed] [Google Scholar]
  13. Matsubara H., Hasegawa S., Fujimura S., Shima T., Sugimura T. Studies on poly (adenosine diphosphate ribose). V. Mechanism of hydrolysis of poly (adenosine diphosphate ribose) by snake venom phosphodiesterase. J Biol Chem. 1970 Jul 25;245(14):3606–3611. [PubMed] [Google Scholar]
  14. Mattes W. B., Hartley J. A., Kohn K. W. Mechanism of DNA strand breakage by piperidine at sites of N7-alkylguanines. Biochim Biophys Acta. 1986 Oct 16;868(1):71–76. doi: 10.1016/0167-4781(86)90088-6. [DOI] [PubMed] [Google Scholar]
  15. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  16. RAZZELL W. E., KHORANA H. G. Studies on polynucleotides. IV. Enzymic degradation; the stepwise action of venom phosphodiesterase on deoxyribo-oligonucleotides. J Biol Chem. 1959 Aug;234(8):2114–2117. [PubMed] [Google Scholar]
  17. Razin A., Hirose T., Itakura K., Riggs A. D. Efficient correction of a mutation by use of chemically synthesized DNA. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4268–4270. doi: 10.1073/pnas.75.9.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SETLOW R. B., CARRIER W. L., BOLLUM F. J. NUCLEASE-RESISTANT SEQUENCES IN ULTRAVIOLET-IRRADIATED DEOXYRIBONUCLEIC ACID. Biochim Biophys Acta. 1964 Nov 15;91:446–461. doi: 10.1016/0926-6550(64)90075-1. [DOI] [PubMed] [Google Scholar]
  19. Sagher D., Strauss B. Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry. 1983 Sep 13;22(19):4518–4526. doi: 10.1021/bi00288a026. [DOI] [PubMed] [Google Scholar]
  20. Schaaper R. M., Loeb L. A. Depurination causes mutations in SOS-induced cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1773–1777. doi: 10.1073/pnas.78.3.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. TAKAHASHI I. Transducing phages for Bacillus subtilis. J Gen Microbiol. 1963 May;31:211–217. doi: 10.1099/00221287-31-2-211. [DOI] [PubMed] [Google Scholar]
  22. Tanaka T., Letsinger R. L. Syringe method for stepwise chemical synthesis of oligonucleotides. Nucleic Acids Res. 1982 May 25;10(10):3249–3260. doi: 10.1093/nar/10.10.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vasseur J. J., Rayner B., Imbach J. L. Preparation of a short synthetic apurinic oligonucleotide. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1204–1208. doi: 10.1016/0006-291x(86)90378-5. [DOI] [PubMed] [Google Scholar]
  24. Vousden K. H., Bos J. L., Marshall C. J., Phillips D. H. Mutations activating human c-Ha-ras1 protooncogene (HRAS1) induced by chemical carcinogens and depurination. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1222–1226. doi: 10.1073/pnas.83.5.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES