Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Mar 25;23(6):893–900. doi: 10.1093/nar/23.6.893

A new approach to the synthesis of the 5'-deoxy-5'-methylphosphonate linked thymidine oligonucleotide analogues.

T Szabó 1, A Kers 1, J Stawinski 1
PMCID: PMC306782  PMID: 7731801

Abstract

A new synthetic method for the preparation of the 5'-deoxy-5'-methylphosphonate linked thymidine oligonucleotides (5'-methylenephosphonate analogues) was developed. The method is based on the use of a phosphonate protecting group, 4-methoxy-1-oxido-2-picolyl, enabling intramolecular nucleophilic catalysis which together with the condensing agent, 2,4,6-triisopropylbenzenesulfonyl chloride, secures fast and efficient formation of the 5'-methylenephosphonate internucleosidic bonds. The produced protected oligomers were treated with thiophenol and triethylamine to remove the phosphonate protecting groups, cleaved from the solid support using concentrated aqueous ammonia, and purified by HPLC. Several thymidine oligonucleotide analogues with the chain length of up to 20 nucleotidic units, in which all internal 5'-oxygen atoms have been replaced by methylene groups directly bound to phosphorus, were synthesised using this methodology.

Full text

PDF
900

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal K. L., Riftina F. Synthesis and enzymatic properties of deoxyribooligonucleotides containing methyl and phenylphosphonate linkages. Nucleic Acids Res. 1979 Jul 11;6(9):3009–3024. doi: 10.1093/nar/6.9.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bongartz J. P., Aubertin A. M., Milhaud P. G., Lebleu B. Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Res. 1994 Nov 11;22(22):4681–4688. doi: 10.1093/nar/22.22.4681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breaker R. R., Gough G. R., Gilham P. T. Synthesis and properties of adenosine oligonucleotide analogues containing methylene groups in place of phosphodiester 5'-oxygens. Biochemistry. 1993 Sep 7;32(35):9125–9128. doi: 10.1021/bi00086a017. [DOI] [PubMed] [Google Scholar]
  4. Clarenc J. P., Degols G., Leonetti J. P., Milhaud P., Lebleu B. Delivery of antisense oligonucleotides by poly(L-lysine) conjugation and liposome encapsulation. Anticancer Drug Des. 1993 Feb;8(1):81–94. [PubMed] [Google Scholar]
  5. Daub G. W., van Tamelen E. E. Synthesis of oligoribonucleotides based on the facile cleavage of methyl phosphotriester intermediates. J Am Chem Soc. 1977 May 11;99(10):3526–3528. doi: 10.1021/ja00452a069. [DOI] [PubMed] [Google Scholar]
  6. Efimov V. A., Buryakova A. A., Dubey I. Y., Polushin N. N., Chakhmakhcheva O. G., Ovchinnikov YuA Application of new catalytic phosphate protecting groups for the highly efficient phosphotriester oligonucleotide synthesis. Nucleic Acids Res. 1986 Aug 26;14(16):6525–6540. doi: 10.1093/nar/14.16.6525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garbesi A., Capobianco M. L., Colonna F. P., Tondelli L., Arcamone F., Manzini G., Hilbers C. W., Aelen J. M., Blommers M. J. L-DNAs as potential antimessenger oligonucleotides: a reassessment. Nucleic Acids Res. 1993 Sep 11;21(18):4159–4165. doi: 10.1093/nar/21.18.4159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanvey J. C., Peffer N. J., Bisi J. E., Thomson S. A., Cadilla R., Josey J. A., Ricca D. J., Hassman C. F., Bonham M. A., Au K. G. Antisense and antigene properties of peptide nucleic acids. Science. 1992 Nov 27;258(5087):1481–1485. doi: 10.1126/science.1279811. [DOI] [PubMed] [Google Scholar]
  9. Jones G. H., Albrecht H. P., Damodaran N. P., Moffatt J. G. Synthesis of isosteric phosphonate analogs of some biologically important phosphodiesters. J Am Chem Soc. 1970 Sep 9;92(18):5510–5511. doi: 10.1021/ja00721a034. [DOI] [PubMed] [Google Scholar]
  10. Jones G. H., Moffatt J. G. The synthesis of 6'-deoxyhomonucleoside-6'-phosphonic acids. J Am Chem Soc. 1968 Sep 11;90(19):5336–5338. doi: 10.1021/ja01021a086. [DOI] [PubMed] [Google Scholar]
  11. Kraszewski A., Stawiński J., Wiewiórowski M. The case of sulfonation in the chemical synthesis of oligonucleotides. Nucleic Acids Res. 1980 May 24;8(10):2301–2305. doi: 10.1093/nar/8.10.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kulka M., Smith C. C., Aurelian L., Fishelevich R., Meade K., Miller P., Ts'o P. O. Site specificity of the inhibitory effects of oligo(nucleoside methylphosphonate)s complementary to the acceptor splice junction of herpes simplex virus type 1 immediate early mRNA 4. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6868–6872. doi: 10.1073/pnas.86.18.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamond A. I., Sproat B. S. Antisense oligonucleotides made of 2'-O-alkylRNA: their properties and applications in RNA biochemistry. FEBS Lett. 1993 Jun 28;325(1-2):123–127. doi: 10.1016/0014-5793(93)81427-2. [DOI] [PubMed] [Google Scholar]
  14. Leonetti J. P., Machy P., Degols G., Lebleu B., Leserman L. Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral RNA selectively inhibit viral replication. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2448–2451. doi: 10.1073/pnas.87.7.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leonetti J. P., Rayner B., Lemaitre M., Gagnor C., Milhaud P. G., Imbach J. L., Lebleu B. Antiviral activity of conjugates between poly(L-lysine) and synthetic oligodeoxyribonucleotides. Gene. 1988 Dec 10;72(1-2):323–332. doi: 10.1016/0378-1119(88)90159-x. [DOI] [PubMed] [Google Scholar]
  16. Marugg J. E., de Vroom E., Dreef C. E., Tromp M., van der Marel G. A., van Boom J. H. Synthesis of nucleic acid methylphosphonates via the 1-hydroxybenzotriazole phosphotriester approach. Nucleic Acids Res. 1986 Mar 11;14(5):2171–2185. doi: 10.1093/nar/14.5.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller P. S., Reddy M. P., Murakami A., Blake K. R., Lin S. B., Agris C. H. Solid-phase syntheses of oligodeoxyribonucleoside methylphosphonates. Biochemistry. 1986 Sep 9;25(18):5092–5097. doi: 10.1021/bi00366a017. [DOI] [PubMed] [Google Scholar]
  18. Pon R. T., Usman N., Ogilvie K. K. Derivatization of controlled pore glass beads for solid phase oligonucleotide synthesis. Biotechniques. 1988 Sep;6(8):768–775. [PubMed] [Google Scholar]
  19. Reese C. B., Zard L. Some observations relating to the oximate ion promoted unblocking of oligonucleotide aryl esters. Nucleic Acids Res. 1981 Sep 25;9(18):4611–4626. doi: 10.1093/nar/9.18.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shaw J. P., Kent K., Bird J., Fishback J., Froehler B. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 1991 Feb 25;19(4):747–750. doi: 10.1093/nar/19.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shea R. G., Marsters J. C., Bischofberger N. Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res. 1990 Jul 11;18(13):3777–3783. doi: 10.1093/nar/18.13.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stawinski J., Hozumi T., Narang S. A., Bahl C. P., Wu R. Arylsulfonyltetrazoles, new coupling reagents and further improvements in the triester method for the synthesis of deoxyribooligonucleotides. Nucleic Acids Res. 1977 Feb;4(2):353–371. doi: 10.1093/nar/4.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stawinski J., Strömberg R., Szabó T. Convenient synthesis of dinucleotide methylphosphonates. Nucleic Acids Symp Ser. 1991;(24):229–229. [PubMed] [Google Scholar]
  24. Stawinski J., Szabó T. Studies directed towards efficient synthesis of oligo-5'-deoxy-5-C-(phosphonomethyl)deoxyribonucleosides. Nucleic Acids Symp Ser. 1991;(24):71–72. [PubMed] [Google Scholar]
  25. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  26. Stephenson M. L., Zamecnik P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A. 1978 Jan;75(1):285–288. doi: 10.1073/pnas.75.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]
  28. Yakovlev G. I., Moiseyev G. P. NMR studies of a complex of RNAse from Penicillium brevicompactum with dinucleoside phosphonate and the implications for the mechanism of enzyme action. Biochim Biophys Acta. 1993 Sep 3;1202(1):143–148. doi: 10.1016/0167-4838(93)90075-3. [DOI] [PubMed] [Google Scholar]
  29. Zamecnik P. C., Stephenson M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978 Jan;75(1):280–284. doi: 10.1073/pnas.75.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zon G. Oligonucleotide analogues as potential chemotherapeutic agents. Pharm Res. 1988 Sep;5(9):539–549. doi: 10.1023/a:1015985728434. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES