Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Jun 11;23(11):2037–2040. doi: 10.1093/nar/23.11.2037

Maleimide-mediated protein conjugates of a nucleoside triphosphate gamma-S and an internucleotide phosphorothioate diester.

A S Karim 1, C S Johansson 1, J K Weltman 1
PMCID: PMC306981  PMID: 7596834

Abstract

The purpose of this study was to determine whether the gamma-S of nucleoside thiotriphosphates and the non-bridging sulfur of internucleotide phosphorothioate diesters possess sufficient thiol character to form adducts with maleimides. Adenosine triphosphate gamma-S (ATPS) and thymidyl-PS-thymidine (TPST) were each reacted with the reporter molecule N-1 pyrene maleimide (PM) and the fluorescence intensity was recorded. The observed reactivity of the phosphorothioate nucleotides towards maleimide was used as a basis for preparing covalent protein-nucleotide conjugates of ATPS and of the internucleotide phosphorothioate diester, deoxyadenylyl-PS-deoxy-adenylyl-PS-deoxyadenosine (dA3(PS)2). The absorbance spectra of bovine serum albumin (BSA) conjugates of ATPS and of dA3(PS)2 showed the formation of protein-nucleotide conjugates, with absorbance maxima near 260 nm. The degree of conjugation was 1.69 nucleotides (nt)/BSA molecule for ATPS and 0.44 nt/BSA molecule for dA3(PS)2. The extent of conjugation of the gamma-S of the nucleoside thiotriphosphate and of the non-bridging sulfur of the internucleotide phosphorothioate diester with maleimide-derivatized protein agreed with their relative reactivity towards PM. Both the gamma-S of the nucleoside thiotriphosphate and the internucleotide phosphorothioate diester were found to possess sufficient thiol character to permit formation of maleimide-mediated protein conjugates.

Full text

PDF
2037

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal S., Zamecnik P. C. Site specific functionalization of oligonucleotides for attaching two different reporter groups. Nucleic Acids Res. 1990 Sep 25;18(18):5419–5423. doi: 10.1093/nar/18.18.5419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlsson J., Drevin H., Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 1978 Sep 1;173(3):723–737. doi: 10.1042/bj1730723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cosstick R., McLaughlin L. W., Eckstein F. Fluorescent labelling of tRNA and oligodeoxynucleotides using T4 RNA ligase. Nucleic Acids Res. 1984 Feb 24;12(4):1791–1810. doi: 10.1093/nar/12.4.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eckstein F., Gish G. Phosphorothioates in molecular biology. Trends Biochem Sci. 1989 Mar;14(3):97–100. doi: 10.1016/0968-0004(89)90130-8. [DOI] [PubMed] [Google Scholar]
  5. Frey P. A., Sammons R. D. Bond order and charge localization in nucleoside phosphorothioates. Science. 1985 May 3;228(4699):541–545. doi: 10.1126/science.2984773. [DOI] [PubMed] [Google Scholar]
  6. Gish G., Eckstein F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science. 1988 Jun 10;240(4858):1520–1522. doi: 10.1126/science.2453926. [DOI] [PubMed] [Google Scholar]
  7. Karim A. S., Weltman J. K. Formation of protein conjugates of phosphorothioate nucleoside diphosphate beta-S. Nucleic Acids Res. 1993 Nov 11;21(22):5281–5282. doi: 10.1093/nar/21.22.5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. NEUMANN H., GOLDBERGER R. F., SELA M. INTERACTION OF PHOSPHOROTHIOATE WITH THE DISULFIDE BONDS OF RIBONUCLEASE AND LYSOZYME. J Biol Chem. 1964 May;239:1536–1540. [PubMed] [Google Scholar]
  9. Nakamaye K. L., Gish G., Eckstein F., Vosberg H. P. Direct sequencing of polymerase chain reaction amplified DNA fragments through the incorporation of deoxynucleoside alpha-thiotriphosphates. Nucleic Acids Res. 1988 Nov 11;16(21):9947–9959. doi: 10.1093/nar/16.21.9947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Neumann H., Smith R. A. Cleavage of the disulfide bonds of cystine and oxidized glutathione by phosphorothioate. Arch Biochem Biophys. 1967 Nov;122(2):354–361. doi: 10.1016/0003-9861(67)90205-6. [DOI] [PubMed] [Google Scholar]
  11. Nordmann R., Andersen E., Trussardi R., Mazer N. A. Kinetics of interleukin 2 mRNA and protein produced in the human T-cell line Jurkat and effect of cyclosporin A. Biochemistry. 1989 Feb 21;28(4):1791–1797. doi: 10.1021/bi00430a055. [DOI] [PubMed] [Google Scholar]
  12. Puech F., Gosselin G., Lefebvre I., Pompon A., Aubertin A. M., Kirn A., Imbach J. L. Intracellular delivery of nucleoside monophosphates through a reductase-mediated activation process. Antiviral Res. 1993 Oct;22(2-3):155–174. doi: 10.1016/0166-3542(93)90093-x. [DOI] [PubMed] [Google Scholar]
  13. Weltman J. K., Szaro R. P., Frackelton A. R., Jr, Dowben R. M., Bunting J. R., Cathou B. E. N-(3-pyrene)maleimide: a long lifetime fluorescent sulfhydryl reagent. J Biol Chem. 1973 May 10;248(9):3173–3177. [PubMed] [Google Scholar]
  14. Wu T., Orgel L. E. Disulfide-linked oligonucleotide phosphorothioates: novel analogues of nucleic acids. J Mol Evol. 1991;32:274–277. doi: 10.1007/BF02102183. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES