Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Jul 25;23(14):2648–2653. doi: 10.1093/nar/23.14.2648

The fat body cell-free system for tissue-specific transcription of plasma protein gene of Bombyx mori.

E Mine 1, H Sakurai 1, S Izumi 1, S Tomino 1
PMCID: PMC307088  PMID: 7651825

Abstract

A nuclear extract was prepared for the larval fat body of the silkworm, Bombyx mori, and a homologous in vitro system was developed for the transcription of major plasma protein gene of B.mori. The gene for SP1, a storage protein of B.mori, and adenovirus 2 major late (AdML) gene were faithfully transcribed under relatively high template concentrations in the nuclear extract prepared from the fat body of female fifth instar larvae. Complete inhibition of gene transcription by a low concentration of alpha-amanitin indicated that the reaction is catalyzed by RNA polymerase II. At low template concentration (0.6 nM) the fat body nuclear extract transcribed the homologous SP1 gene with high efficiency, while AdML gene and larval cuticle protein gene were only barely transcribed in the same extract. The SP1 gene deleted upstream of the TATA box sequence showed little effect on transcription, whereas mutations that destroy TATA sequence totally abolished the gene transcription. These results suggested that the core promoter region of SP1 gene spanning between positions -44 and +16 is essential for the fat body specific transcription in vitro.

Full text

PDF
2648

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggin M. D., Tjian R. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell. 1988 Jun 3;53(5):699–711. doi: 10.1016/0092-8674(88)90088-8. [DOI] [PubMed] [Google Scholar]
  2. Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. J Biol Chem. 1979 Dec 25;254(24):12484–12487. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Dierich A., Gaub M. P., LePennec J. P., Astinotti D., Chambon P. Cell-specificity of the chicken ovalbumin and conalbumin promoters. EMBO J. 1987 Aug;6(8):2305–2312. doi: 10.1002/j.1460-2075.1987.tb02505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faraonio R., Minopoli G., Porcellini A., Costanzo F., Cimino F., Russo T. The DNA sequence encompassing the transcription start site of a TATA-less promoter contains enough information to drive neuron-specific transcription. Nucleic Acids Res. 1994 Nov 25;22(23):4876–4883. doi: 10.1093/nar/22.23.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujii T., Sakurai H., Izumi S., Tomino S. Structure of the gene for the arylphorin-type storage protein SP 2 of Bombyx mori. J Biol Chem. 1989 Jul 5;264(19):11020–11025. [PubMed] [Google Scholar]
  7. Gorski K., Carneiro M., Schibler U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell. 1986 Dec 5;47(5):767–776. doi: 10.1016/0092-8674(86)90519-2. [DOI] [PubMed] [Google Scholar]
  8. Heberlein U., Tjian R. Temporal pattern of alcohol dehydrogenase gene transcription reproduced by Drosophila stage-specific embryonic extracts. Nature. 1988 Feb 4;331(6155):410–415. doi: 10.1038/331410a0. [DOI] [PubMed] [Google Scholar]
  9. Heiermann R., Pongs O. In vitro transcription with extracts of nuclei of Drosophila embryos. Nucleic Acids Res. 1985 Apr 25;13(8):2709–2730. doi: 10.1093/nar/13.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobayashi A., Hirai H., Kubo T., Ueno K., Nakanishi Y., Natori S. Cloning and in vitro transcription of the Sarcophaga lectin gene. Biochim Biophys Acta. 1989 Dec 22;1009(3):244–250. doi: 10.1016/0167-4781(89)90109-7. [DOI] [PubMed] [Google Scholar]
  11. Laybourn P. J., Kadonaga J. T. Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science. 1992 Sep 18;257(5077):1682–1685. doi: 10.1126/science.1388287. [DOI] [PubMed] [Google Scholar]
  12. Maniatis T., Goodbourn S., Fischer J. A. Regulation of inducible and tissue-specific gene expression. Science. 1987 Jun 5;236(4806):1237–1245. doi: 10.1126/science.3296191. [DOI] [PubMed] [Google Scholar]
  13. McCormick A., Brady H., Fukushima J., Karin M. The pituitary-specific regulatory gene GHF1 contains a minimal cell type-specific promoter centered around its TATA box. Genes Dev. 1991 Aug;5(8):1490–1503. doi: 10.1101/gad.5.8.1490. [DOI] [PubMed] [Google Scholar]
  14. Mine E., Izumi S., Katsuki M., Tomino S. Developmental and sex-dependent regulation of storage protein synthesis in the silkworm, Bombyx mori. Dev Biol. 1983 Jun;97(2):329–337. doi: 10.1016/0012-1606(83)90090-8. [DOI] [PubMed] [Google Scholar]
  15. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  16. Mizushima-Sugano J., Roeder R. G. Cell-type-specific transcription of an immunoglobulin kappa light chain gene in vitro. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8511–8515. doi: 10.1073/pnas.83.22.8511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parker C. S., Topol J. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell. 1984 May;37(1):273–283. doi: 10.1016/0092-8674(84)90323-4. [DOI] [PubMed] [Google Scholar]
  18. Sakurai H., Fujii T., Izumi S., Tomino S. Structure and expression of gene coding for sex-specific storage protein of Bombyx mori. J Biol Chem. 1988 Jun 5;263(16):7876–7880. [PubMed] [Google Scholar]
  19. Sakurai H., Izumi S., Tomino S. In vitro transcription of the plasma protein genes of Bombyx mori. Biochim Biophys Acta. 1990 Sep 10;1087(1):18–24. doi: 10.1016/0167-4781(90)90115-i. [DOI] [PubMed] [Google Scholar]
  20. Salmon P., Giovane A., Wasylyk B., Klatzmann D. Characterization of the human CD4 gene promoter: transcription from the CD4 gene core promoter is tissue-specific and is activated by Ets proteins. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7739–7743. doi: 10.1073/pnas.90.16.7739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki T., Suzuki Y. Interaction of composite protein complex with the fibroin enhancer sequence. J Biol Chem. 1988 Apr 25;263(12):5979–5986. [PubMed] [Google Scholar]
  22. Suzuki Y., Tsuda M., Takiya S., Hirose S., Suzuki E., Kameda M., Ninaki O. Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9522–9526. doi: 10.1073/pnas.83.24.9522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takiya S., Hui C. C., Suzuki Y. A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. EMBO J. 1990 Feb;9(2):489–496. doi: 10.1002/j.1460-2075.1990.tb08135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tamura T., Aoyama A., Inoue T., Miura M., Okano H., Mikoshiba K. Tissue-specific in vitro transcription from the mouse myelin basic protein promoter. Mol Cell Biol. 1989 Jul;9(7):3122–3126. doi: 10.1128/mcb.9.7.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tamura T., Sumita K., Hirose S., Mikoshiba K. Core promoter of the mouse myelin basic protein gene governs brain-specific transcription in vitro. EMBO J. 1990 Oct;9(10):3101–3108. doi: 10.1002/j.1460-2075.1990.tb07507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Theill L. E., Wiborg O., Vuust J. Cell-specific expression of the human gastrin gene: evidence for a control element located downstream of the TATA box. Mol Cell Biol. 1987 Dec;7(12):4329–4336. doi: 10.1128/mcb.7.12.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tsuda M., Suzuki Y. Faithful transcription initiation of fibroin gene in a homologous cell-free system reveals an enhancing effect of 5' flanking sequence far upstream. Cell. 1981 Nov;27(1 Pt 2):175–182. doi: 10.1016/0092-8674(81)90371-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES