Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Jan 25;22(2):115–123. doi: 10.1093/nar/22.2.115

Characterization of serine and leucine tRNAs in an asporogenic yeast Candida cylindracea and evolutionary implications of genes for tRNA(Ser)CAG responsible for translation of a non-universal genetic code.

T Suzuki 1, T Ueda 1, T Yokogawa 1, K Nishikawa 1, K Watanabe 1
PMCID: PMC307760  PMID: 8121794

Abstract

Five serine and three leucine isoaceptor tRNAs were purified from the asporogenic yeast Candida cylindracea, in which codon CUG is translated as serine instead of leucine, and their primary structures were determined. From the wobble hypothesis, it was assumed that one of the tRNA(Leu) species (Leu1), with the anticodon CmAA, corresponded to the UUG leucine codon, and that the remaining two leucine tRNAs (Leu2 and Leu3), with the same IAG anticodon sequence would decode the CUU, CUC and CUA codons as leucine, but not the CUG codon; this was clarified by an in vitro translation experiment with C.cylindracea using synthetic mRNAs containing the CUA or CUG codons. One of the serine tRNAs (Ser1) has already been demonstrated to have the anticodon CAG and to be responsible for translation of the codon CUG in C.cylindracea. Three of the other species of tRNA(Ser) (Ser2,3 and 4), with the anticodon sequences cm5UGA, IGA and CGA, can translate all four codons in the UCN codon box, while the remaining species (Ser5), with the anticodon GCU, corresponds to AGU and AGC serine codons. The gene sequences for these five serine and three leucine tRNAs were also determined, with the finding that only tRNA(Ser)CAG (Ser1) has an intron. At least five different types of tRNA(Ser)CAG genes exist in the genome of C.cylindracea. The nucleotide sequences of the flanking regions of these tRNA(Ser)CAG genes indicated that the tRNA(Ser)CAG gene has duplicated at least three times on the genome. The existence of multiple genes for tRNA(Ser)CAG on the genome may account for the observation that codon CUG is used very frequently in C.cylindracea. All of these tRNASerCAG genes contain the CCA sequence in their 3' termini, suggesting the possibility that during their multiplication process in the evolution of the C.cylindracea genome, the tRNA(Ser)CAG molecule was integrated into DNA via reverse transcription.

Full text

PDF
118

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andachi Y., Yamao F., Muto A., Osawa S. Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. J Mol Biol. 1989 Sep 5;209(1):37–54. doi: 10.1016/0022-2836(89)90168-x. [DOI] [PubMed] [Google Scholar]
  2. Barrell B. G., Bankier A. T., Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–194. doi: 10.1038/282189a0. [DOI] [PubMed] [Google Scholar]
  3. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  4. Donis-Keller H. Phy M: an RNase activity specific for U and A residues useful in RNA sequence analysis. Nucleic Acids Res. 1980 Jul 25;8(14):3133–3142. doi: 10.1093/nar/8.14.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol. 1982 Jul 15;158(4):573–597. doi: 10.1016/0022-2836(82)90250-9. [DOI] [PubMed] [Google Scholar]
  6. Kawaguchi Y., Honda H., Taniguchi-Morimura J., Iwasaki S. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature. 1989 Sep 14;341(6238):164–166. doi: 10.1038/341164a0. [DOI] [PubMed] [Google Scholar]
  7. Keith G., Desgrès J., Pochart P., Heyman T., Kuo K. C., Gehrke C. W. Eukaryotic tRNAs(Pro): primary structure of the anticodon loop; presence of 5-carbamoylmethyluridine or inosine as the first nucleoside of the anticodon. Biochim Biophys Acta. 1990 Jul 30;1049(3):255–260. doi: 10.1016/0167-4781(90)90095-j. [DOI] [PubMed] [Google Scholar]
  8. Kuchino Y., Hanyu N., Nishimura S. Analysis of modified nucleosides and nucleotide sequence of tRNA. Methods Enzymol. 1987;155:379–396. doi: 10.1016/0076-6879(87)55026-1. [DOI] [PubMed] [Google Scholar]
  9. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  10. Munz P., Leupold U., Agris P., Kohli J. In vivo decoding rules in Schizosaccharomyces pombe are at variance with in vitro data. Nature. 1981 Nov 12;294(5837):187–188. doi: 10.1038/294187a0. [DOI] [PubMed] [Google Scholar]
  11. Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res. 1993 Aug 25;21(17):4039–4045. doi: 10.1093/nar/21.17.4039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Osawa S., Jukes T. H., Watanabe K., Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. doi: 10.1128/mr.56.1.229-264.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  14. ROZIJN T. H., TONINO G. J. STUDIES ON THE YEAST NUCLEUS. I. THE ISOLATION OF NUCLEI. Biochim Biophys Acta. 1964 Sep 11;91:105–112. doi: 10.1016/0926-6550(64)90174-4. [DOI] [PubMed] [Google Scholar]
  15. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  16. Sprinzl M., Hartmann T., Weber J., Blank J., Zeidler R. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1989;17 (Suppl):r1–172. doi: 10.1093/nar/17.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Suzuki T., Ueda T., Ohama T., Osawa S., Watanabe K. The gene for serine tRNA having anticodon sequence CAG in a pathogenic yeast, Candida albicans. Nucleic Acids Res. 1993 Jan 25;21(2):356–356. doi: 10.1093/nar/21.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yokogawa T., Suzuki T., Ueda T., Mori M., Ohama T., Kuchino Y., Yoshinari S., Motoki I., Nishikawa K., Osawa S. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7408–7411. doi: 10.1073/pnas.89.16.7408. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES