Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Sep;22(17):3600–3609.

The FSSP database of structurally aligned protein fold families.

L Holm 1, C Sander 1
PMCID: PMC308329  PMID: 7937067

Abstract

FSSP (families of structurally similar proteins) is a database of structural alignments of proteins in the Protein Data Bank (PDB). The database currently contains an extended structural family for each of 330 representative protein chains. Each data set contains structural alignments of one search structure with all other structurally significantly similar proteins in the representative set (remote homologs, < 30% sequence identity), as well as all structures in the Protein Data Bank with 70-30% sequence identity relative to the search structure (medium homologs). Very close homologs (above 70% sequence identity) are excluded as they rarely have marked structural differences. The alignments of remote homologs are the result of pairwise all-against-all structural comparisons in the set of 330 representative protein chains. All such comparisons are based purely on the 3D co-ordinates of the proteins and are derived by automatic (objective) structure comparison programs. The significance of structural similarity is estimated based on statistical criteria. The FSSP database is available electronically from the EMBL file server and by anonymous ftp (file transfer protocol).

Full text

PDF
3603

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashford D., Chothia C., Lesk A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol. 1987 Jul 5;196(1):199–216. doi: 10.1016/0022-2836(87)90521-3. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Chothia C. Proteins. One thousand families for the molecular biologist. Nature. 1992 Jun 18;357(6379):543–544. doi: 10.1038/357543a0. [DOI] [PubMed] [Google Scholar]
  4. Etzold T., Argos P. SRS--an indexing and retrieval tool for flat file data libraries. Comput Appl Biosci. 1993 Feb;9(1):49–57. doi: 10.1093/bioinformatics/9.1.49. [DOI] [PubMed] [Google Scholar]
  5. Holm L., Ouzounis C., Sander C., Tuparev G., Vriend G. A database of protein structure families with common folding motifs. Protein Sci. 1992 Dec;1(12):1691–1698. doi: 10.1002/pro.5560011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holm L., Ouzounis C., Sander C., Tuparev G., Vriend G. A database of protein structure families with common folding motifs. Protein Sci. 1992 Dec;1(12):1691–1698. doi: 10.1002/pro.5560011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  8. Holm L., Sander C. Searching protein structure databases has come of age. Proteins. 1994 Jul;19(3):165–173. doi: 10.1002/prot.340190302. [DOI] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  11. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  12. Stoehr P. J., Omond R. A. The EMBL Network File Server. Nucleic Acids Res. 1989 Aug 25;17(16):6763–6764. doi: 10.1093/nar/17.16.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
  14. Wilmanns M., Hyde C. C., Davies D. R., Kirschner K., Jansonius J. N. Structural conservation in parallel beta/alpha-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Biochemistry. 1991 Sep 24;30(38):9161–9169. doi: 10.1021/bi00102a006. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES