Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Oct 25;22(21):4414–4418. doi: 10.1093/nar/22.21.4414

Cloning by synteny: identifying C. briggsae homologues of C. elegans genes.

P E Kuwabara 1, S Shah 1
PMCID: PMC308474  PMID: 7971272

Abstract

Phylogenetic comparisons of gene and protein sequences between related species are often used to identify evolutionarily conserved elements that are important for gene expression, function, or regulation. However, homologoues may sometimes be difficult to identify by conventional low stringency hybridisation techniques, if they have undergone substantial sequence divergence. A new approach, cloning by synteny, is described that was used to identify the C. briggsae homologue of the C. elegans sex-determining gene tra-2. We show that four genes tra-2, ppp-1, art-1, and sod-1 are organised in a syntenic cluster and suggest that extensive conservation of gene linkage may exist between C. briggsae and C. elegans. We have also constructed a C. briggsae cDNA library to facilitate characterisation of these genes. Given the rapid progress in the physical mapping and sequencing of the C. elegans genome, cloning by synteny may provide the fastest method for identifying C. briggsae gene homologues, especially for genes encoding novel proteins.

Full text

PDF
4414

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Andersson S., Bishop R. W., Russell D. W. Expression cloning and regulation of steroid 5 alpha-reductase, an enzyme essential for male sexual differentiation. J Biol Chem. 1989 Sep 25;264(27):16249–16255. [PMC free article] [PubMed] [Google Scholar]
  3. Andersson S., Russell D. W. Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proc Natl Acad Sci U S A. 1990 May;87(10):3640–3644. doi: 10.1073/pnas.87.10.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender W., Spierer P., Hogness D. S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. doi: 10.1016/s0022-2836(83)80320-9. [DOI] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emmons S. W., Klass M. R., Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1333–1337. doi: 10.1073/pnas.76.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emmons S. W., Yesner L., Ruan K. S., Katzenberg D. Evidence for a transposon in Caenorhabditis elegans. Cell. 1983 Jan;32(1):55–65. doi: 10.1016/0092-8674(83)90496-8. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  11. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  12. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heine U., Blumenthal T. Characterization of regions of the Caenorhabditis elegans X chromosome containing vitellogenin genes. J Mol Biol. 1986 Apr 5;188(3):301–312. doi: 10.1016/0022-2836(86)90156-7. [DOI] [PubMed] [Google Scholar]
  14. Heschl M. F., Baillie D. L. Functional elements and domains inferred from sequence comparisons of a heat shock gene in two nematodes. J Mol Evol. 1990 Jul;31(1):3–9. doi: 10.1007/BF02101786. [DOI] [PubMed] [Google Scholar]
  15. Johnston I. G., Rush S. J., Gurd J. W., Brown I. R. Molecular cloning of a novel mRNA using an antibody directed against synaptic glycoproteins. J Neurosci Res. 1992 Jun;32(2):159–166. doi: 10.1002/jnr.490320205. [DOI] [PubMed] [Google Scholar]
  16. Kuwabara P. E., Kimble J. Molecular genetics of sex determination in C. elegans. Trends Genet. 1992 May;8(5):164–168. doi: 10.1016/0168-9525(92)90218-s. [DOI] [PubMed] [Google Scholar]
  17. Kuwabara P. E., Okkema P. G., Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Biol Cell. 1992 Apr;3(4):461–473. doi: 10.1091/mbc.3.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee Y. H., Huang X. Y., Hirsh D., Fox G. E., Hecht R. M. Conservation of gene organization and trans-splicing in the glyceraldehyde-3-phosphate dehydrogenase-encoding genes of Caenorhabditis briggsae. Gene. 1992 Nov 16;121(2):227–235. doi: 10.1016/0378-1119(92)90126-a. [DOI] [PubMed] [Google Scholar]
  20. Marck C. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988 Mar 11;16(5):1829–1836. doi: 10.1093/nar/16.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okayama H., Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982 Feb;2(2):161–170. doi: 10.1128/mcb.2.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prasad S. S., Baillie D. L. Evolutionarily conserved coding sequences in the dpy-20-unc-22 region of Caenorhabditis elegans. Genomics. 1989 Aug;5(2):185–198. doi: 10.1016/0888-7543(89)90045-1. [DOI] [PubMed] [Google Scholar]
  23. Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., Donaldson D., Goto J., O'Regan J. P., Deng H. X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):59–62. doi: 10.1038/362059a0. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spieth J., Brooke G., Kuersten S., Lea K., Blumenthal T. Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell. 1993 May 7;73(3):521–532. doi: 10.1016/0092-8674(93)90139-h. [DOI] [PubMed] [Google Scholar]
  26. Villeneuve A. M., Meyer B. J. The regulatory hierarchy controlling sex determination and dosage compensation in Caenorhabditis elegans. Adv Genet. 1990;27:117–188. doi: 10.1016/s0065-2660(08)60025-5. [DOI] [PubMed] [Google Scholar]
  27. Zucker-Aprison E., Blumenthal T. Potential regulatory elements of nematode vitellogenin genes revealed by interspecies sequence comparison. J Mol Evol. 1989 Jun;28(6):487–496. doi: 10.1007/BF02602929. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES