Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Aug 11;21(16):3643–3646. doi: 10.1093/nar/21.16.3643

The gene encoding DNA polymerase alpha from Plasmodium falciparum.

J H White 1, B J Kilbey 1, E de Vries 1, M Goman 1, P Alano 1, S Cheesman 1, S McAleese 1, R G Ridley 1
PMCID: PMC309859  PMID: 8367280

Abstract

The gene encoding DNA polymerase alpha from the human malaria parasite Plasmodium falciparum has been sequenced and characterised. The deduced amino acid sequence possesses the seven sequence motifs which characterise eukaryotic replicative DNA polymerases (I-VII) and four of five motifs (A-E) identified in alpha DNA polymerases. The predicted protein also contains sequences which are reminiscent of Plasmodium proteins but absent from other DNA polymerases. These include four blocks of additional amino acids interspersed with the conserved motifs of the DNA polymerases, four asparagine rich sequences and a novel carboxy-terminal extension. Repetitive sequences similar to those found in other malarial proteins are also present. cDNA-directed PCR was used to establish the presence of these features in the approximately 7kb mRNA. The coding sequence contains a single intron. The gene for DNAPol alpha is located on chromosome 4 and is transcribed in both asexual and sexual erythrocytic stages of the parasite.

Full text

PDF
3646

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  2. Damagnez V., Tillit J., de Recondo A. M., Baldacci G. The POL1 gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol Gen Genet. 1991 Apr;226(1-2):182–189. doi: 10.1007/BF00273602. [DOI] [PubMed] [Google Scholar]
  3. Delves C. J., Alano P., Ridley R. G., Goman M., Holloway S. P., Hyde J. E., Scaife J. G. Expression of alpha and beta tubulin genes during the asexual and sexual blood stages of Plasmodium falciparum. Mol Biochem Parasitol. 1990 Dec;43(2):271–278. doi: 10.1016/0166-6851(90)90151-b. [DOI] [PubMed] [Google Scholar]
  4. Delves C. J., Ridley R. G., Goman M., Holloway S. P., Hyde J. E., Scaife J. G. Cloning of a beta-tubulin gene from Plasmodium falciparum. Mol Microbiol. 1989 Nov;3(11):1511–1519. doi: 10.1111/j.1365-2958.1989.tb00137.x. [DOI] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goman M., Langsley G., Hyde J. E., Yankovsky N. K., Zolg J. W., Scaife J. G. The establishment of genomic DNA libraries for the human malaria parasite Plasmodium falciparum and identification of individual clones by hybridisation. Mol Biochem Parasitol. 1982 Jun;5(6):391–400. doi: 10.1016/0166-6851(82)90012-3. [DOI] [PubMed] [Google Scholar]
  7. Goodman H. M., MacDonald R. J. Cloning of hormone genes from a mixture of cDNA molecules. Methods Enzymol. 1979;68:75–90. doi: 10.1016/0076-6879(79)68007-2. [DOI] [PubMed] [Google Scholar]
  8. Hirose F., Yamaguchi M., Nishida Y., Masutani M., Miyazawa H., Hanaoka F., Matsukage A. Structure and expression during development of Drosophila melanogaster gene for DNA polymerase alpha. Nucleic Acids Res. 1991 Sep 25;19(18):4991–4998. doi: 10.1093/nar/19.18.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson L. M., Snyder M., Chang L. M., Davis R. W., Campbell J. L. Isolation of the gene encoding yeast DNA polymerase I. Cell. 1985 Nov;43(1):369–377. doi: 10.1016/0092-8674(85)90042-x. [DOI] [PubMed] [Google Scholar]
  10. Leegwater P. A., Strating M., Murphy N. B., Kooy R. F., van der Vliet P. C., Overdulve J. P. The Trypanosoma brucei DNA polymerase alpha core subunit gene is developmentally regulated and linked to a constitutively expressed open reading frame. Nucleic Acids Res. 1991 Dec 11;19(23):6441–6447. doi: 10.1093/nar/19.23.6441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li W. B., Bzik D. J., Gu H. M., Tanaka M., Fox B. A., Inselburg J. An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucleic Acids Res. 1989 Dec 11;17(23):9621–9636. doi: 10.1093/nar/17.23.9621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li W. B., Bzik D. J., Tanaka M., Gu H. M., Fox B. A., Inselburg J. Characterization of the gene encoding the largest subunit of Plasmodium falciparum RNA polymerase III. Mol Biochem Parasitol. 1991 Jun;46(2):229–239. doi: 10.1016/0166-6851(91)90047-a. [DOI] [PubMed] [Google Scholar]
  13. Lucchini G., Mazza C., Scacheri E., Plevani P. Genetic mapping of the Saccharomyces cerevisiae DNA polymerase I gene and characterization of a pol1 temperature-sensitive mutant altered in DNA primase-polymerase complex stability. Mol Gen Genet. 1988 Jun;212(3):459–465. doi: 10.1007/BF00330850. [DOI] [PubMed] [Google Scholar]
  14. Lucchini G., Muzi Falconi M., Pizzagalli A., Aguilera A., Klein H. L., Plevani P. Nucleotide sequence and characterization of temperature-sensitive pol1 mutants of Saccharomyces cerevisiae. Gene. 1990 May 31;90(1):99–104. doi: 10.1016/0378-1119(90)90444-v. [DOI] [PubMed] [Google Scholar]
  15. Murakami Y., Wobbe C. R., Weissbach L., Dean F. B., Hurwitz J. Role of DNA polymerase alpha and DNA primase in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A. 1986 May;83(9):2869–2873. doi: 10.1073/pnas.83.9.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pizzagalli A., Valsasnini P., Plevani P., Lucchini G. DNA polymerase I gene of Saccharomyces cerevisiae: nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3772–3776. doi: 10.1073/pnas.85.11.3772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ridley R. G., White J. H., McAleese S. M., Goman M., Alano P., de Vries E., Kilbey B. J. DNA polymerase delta: gene sequences from Plasmodium falciparum indicate that this enzyme is more highly conserved than DNA polymerase alpha. Nucleic Acids Res. 1991 Dec 25;19(24):6731–6736. doi: 10.1093/nar/19.24.6731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schofield L. On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. Parasitol Today. 1991 May;7(5):99–105. doi: 10.1016/0169-4758(91)90166-l. [DOI] [PubMed] [Google Scholar]
  20. Thaithong S., Beale G. H. Resistance of ten Thai isolates of Plasmodium falciparum to chloroquine and pyrimethamine by in vitro tests. Trans R Soc Trop Med Hyg. 1981;75(2):271–273. doi: 10.1016/0035-9203(81)90333-3. [DOI] [PubMed] [Google Scholar]
  21. Triglia T., Wellems T. E., Kemp D. J. Towards a high-resolution map of the Plasmodium falciparum genome. Parasitol Today. 1992 Jul;8(7):225–229. doi: 10.1016/0169-4758(92)90118-l. [DOI] [PubMed] [Google Scholar]
  22. Tsurimoto T., Melendy T., Stillman B. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature. 1990 Aug 9;346(6284):534–539. doi: 10.1038/346534a0. [DOI] [PubMed] [Google Scholar]
  23. Walliker D., Quakyi I. A., Wellems T. E., McCutchan T. F., Szarfman A., London W. T., Corcoran L. M., Burkot T. R., Carter R. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987 Jun 26;236(4809):1661–1666. doi: 10.1126/science.3299700. [DOI] [PubMed] [Google Scholar]
  24. Wang T. S. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. doi: 10.1146/annurev.bi.60.070191.002501. [DOI] [PubMed] [Google Scholar]
  25. Wong S. W., Wahl A. F., Yuan P. M., Arai N., Pearson B. E., Arai K., Korn D., Hunkapiller M. W., Wang T. S. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988 Jan;7(1):37–47. doi: 10.1002/j.1460-2075.1988.tb02781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  27. Zolg J. W., MacLeod A. J., Dickson I. H., Scaife J. G. Plasmodium falciparum: modifications of the in vitro culture conditions improving parasitic yields. J Parasitol. 1982 Dec;68(6):1072–1080. [PubMed] [Google Scholar]
  28. de Vries E., Stam J. G., Franssen F. F., van der Vliet P. C., Overdulve J. P. Purification and characterization of DNA polymerases from Plasmodium berghei. Mol Biochem Parasitol. 1991 Apr;45(2):223–232. doi: 10.1016/0166-6851(91)90089-o. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES