Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Oct 25;21(21):4936–4940. doi: 10.1093/nar/21.21.4936

Ribosomal protein L25 from Trypanosoma brucei: phylogeny and molecular co-evolution of an rRNA-binding protein and its rRNA binding site.

S Metzenberg 1, C Joblet 1, P Verspieren 1, N Agabian 1
PMCID: PMC311409  PMID: 8177742

Abstract

The gene encoding ribosomal protein L25, a primary rRNA-binding protein, was isolated from the protozoan parasite Trypanosoma brucei. Hybridization studies indicate that multiple copies of the gene are present per T. brucei haploid genome. The C-terminal domain of L25 protein from T. brucei is strikingly similar to L23a protein from rat, L25 proteins from fungal species, and L23 proteins from eubacteria, archaebacteria, and chloroplasts. A phylogenetic analysis of L23/25 proteins and the putative binding sites on their respective LSU-rRNAs (large subunit rRNAs) provides a rare opportunity to study molecular co-evolution between an RNA molecule and the protein that binds to it.

Full text

PDF
4939

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990 Jun 29;61(7):1157–1160. doi: 10.1016/0092-8674(90)90674-4. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Erickson B. W. Optimal sequence alignment using affine gap costs. Bull Math Biol. 1986;48(5-6):603–616. doi: 10.1007/BF02462326. [DOI] [PubMed] [Google Scholar]
  3. Dover G. A., Flavell R. B. Molecular coevolution: DNA divergence and the maintenance of function. Cell. 1984 Oct;38(3):622–623. doi: 10.1016/0092-8674(84)90255-1. [DOI] [PubMed] [Google Scholar]
  4. Dover G. A. Observing development through evolutionary eyes: a practical approach. Bioessays. 1992 Apr;14(4):281–287. doi: 10.1002/bies.950140414. [DOI] [PubMed] [Google Scholar]
  5. Egebjerg J., Christiansen J., Garrett R. A. Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. J Mol Biol. 1991 Nov 20;222(2):251–264. doi: 10.1016/0022-2836(91)90210-w. [DOI] [PubMed] [Google Scholar]
  6. El-Baradi T. T., Raué H. A., De Regt C. H., Planta R. J. Stepwise dissociation of yeast 60S ribosomal subunits by LiCl and identification of L25 as a primary 26S rRNA binding protein. Eur J Biochem. 1984 Oct 15;144(2):393–400. doi: 10.1111/j.1432-1033.1984.tb08477.x. [DOI] [PubMed] [Google Scholar]
  7. Fearon K., Mason T. L. Structure and function of MRP20 and MRP49, the nuclear genes for two proteins of the 54 S subunit of the yeast mitochondrial ribosome. J Biol Chem. 1992 Mar 15;267(8):5162–5170. [PubMed] [Google Scholar]
  8. Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  9. Gross U., Chen J. H., Kono D. H., Lobo J. G., Yu D. T. High degree of conservation between ribosomal proteins of Yersinia pseudotuberculosis and Escherichia coli. Nucleic Acids Res. 1989 May 11;17(9):3601–3602. doi: 10.1093/nar/17.9.3601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hancock J. M., Dover G. A. 'Compensatory slippage' in the evolution of ribosomal RNA genes. Nucleic Acids Res. 1990 Oct 25;18(20):5949–5954. doi: 10.1093/nar/18.20.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hancock J. M., Tautz D., Dover G. A. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol Biol Evol. 1988 Jul;5(4):393–414. doi: 10.1093/oxfordjournals.molbev.a040501. [DOI] [PubMed] [Google Scholar]
  12. Hatakeyama T., Kimura M. Complete amino acid sequences of the ribosomal proteins L25, L29 and L31 from the archaebacterium Halobacterium marismortui. Eur J Biochem. 1988 Mar 15;172(3):703–711. doi: 10.1111/j.1432-1033.1988.tb13945.x. [DOI] [PubMed] [Google Scholar]
  13. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  14. Kimura M., Arndt E., Hatakeyama T., Hatakeyama T., Kimura J. Ribosomal proteins in halobacteria. Can J Microbiol. 1989 Jan;35(1):195–199. doi: 10.1139/m89-030. [DOI] [PubMed] [Google Scholar]
  15. Kimura M., Kimura J., Ashman K. The complete primary structure of ribosomal proteins L1, L14, L15, L23, L24 and L29 from Bacillus stearothermophilus. Eur J Biochem. 1985 Aug 1;150(3):491–497. doi: 10.1111/j.1432-1033.1985.tb09049.x. [DOI] [PubMed] [Google Scholar]
  16. Klotz L. C., Blanken R. L. A practical method for calculating evolutionary trees from sequence data. J Theor Biol. 1981 Jul 21;91(2):261–272. doi: 10.1016/0022-5193(81)90233-2. [DOI] [PubMed] [Google Scholar]
  17. Kooi E. A., Rutgers C. A., Mulder A., Van't Riet J., Venema J., Raué H. A. The phylogenetically conserved doublet tertiary interaction in domain III of the large subunit rRNA is crucial for ribosomal protein binding. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):213–216. doi: 10.1073/pnas.90.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Köpke A. K., Wittmann-Liebold B. Comparative studies of ribosomal proteins and their genes from Methanococcus vannielii and other organisms. Can J Microbiol. 1989 Jan;35(1):11–20. doi: 10.1139/m89-003. [DOI] [PubMed] [Google Scholar]
  19. Köpke A. K., Wittmann-Liebold B. Sequence of the gene for ribosomal protein L23 from the archaebacterium Methanococcus vannielii. FEBS Lett. 1988 Nov 7;239(2):313–318. doi: 10.1016/0014-5793(88)80942-6. [DOI] [PubMed] [Google Scholar]
  20. Leer R. J., van Raamsdonk-Duin M. M., Hagendoorn M. J., Mager W. H., Planta R. J. Structural comparison of yeast ribosomal protein genes. Nucleic Acids Res. 1984 Sep 11;12(17):6685–6700. doi: 10.1093/nar/12.17.6685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McLaughlin W. E., Larrinua I. M. The sequence of the maize plastid encoded rpl 23 locus. Nucleic Acids Res. 1988 Aug 25;16(16):8183–8183. doi: 10.1093/nar/16.16.8183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Milhausen M., Nelson R. G., Parsons M., Newport G., Stuart K., Agabian N. Molecular characterization of initial variants from the IsTat I serodeme of Trypanosoma brucei. Mol Biochem Parasitol. 1983 Nov;9(3):241–254. doi: 10.1016/0166-6851(83)90100-7. [DOI] [PubMed] [Google Scholar]
  23. Ohkubo S., Muto A., Kawauchi Y., Yamao F., Osawa S. The ribosomal protein gene cluster of Mycoplasma capricolum. Mol Gen Genet. 1987 Dec;210(2):314–322. doi: 10.1007/BF00325700. [DOI] [PubMed] [Google Scholar]
  24. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Xing Y., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1992 May 11;20 (Suppl):2199–2200. doi: 10.1093/nar/20.suppl.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raué H. A., Otaka E., Suzuki K. Structural comparison of 26S rRNA-binding ribosomal protein L25 from two different yeast strains and the equivalent proteins from three eubacteria and two chloroplasts. J Mol Evol. 1989 May;28(5):418–426. doi: 10.1007/BF02603077. [DOI] [PubMed] [Google Scholar]
  26. Rutgers C. A., Rientjes J. M., van 't Riet J., Raué H. A. rRNA binding domain of yeast ribosomal protein L25. Identification of its borders and a key leucine residue. J Mol Biol. 1991 Mar 20;218(2):375–385. doi: 10.1016/0022-2836(91)90719-m. [DOI] [PubMed] [Google Scholar]
  27. Schaap P. J., van't Riet J., Woldringh C. L., Raué H. A. Identification and functional analysis of the nuclear localization signals of ribosomal protein L25 from Saccharomyces cerevisiae. J Mol Biol. 1991 Sep 5;221(1):225–237. doi: 10.1016/0022-2836(91)80216-h. [DOI] [PubMed] [Google Scholar]
  28. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suzuki K., Wool I. G. The primary structure of rat ribosomal protein L23a. The application of homology search to the identification of genes for mammalian and yeast ribosomal proteins and a correlation of rat and yeast ribosomal proteins. J Biol Chem. 1993 Feb 5;268(4):2755–2761. [PubMed] [Google Scholar]
  30. Vester B., Garrett R. A. Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre. J Mol Biol. 1984 Nov 5;179(3):431–452. doi: 10.1016/0022-2836(84)90074-3. [DOI] [PubMed] [Google Scholar]
  31. Weitzmann C. J., Cooperman B. S. Reconstitution of Escherichia coli 50S ribosomal subunits containing puromycin-modified L23: functional consequences. Biochemistry. 1990 Apr 10;29(14):3458–3465. doi: 10.1021/bi00466a006. [DOI] [PubMed] [Google Scholar]
  32. Wittmann-Liebold B., Greuer B. Primary structure of protein L23 from the Escherichia coli ribosome. FEBS Lett. 1979 Dec 1;108(1):69–74. doi: 10.1016/0014-5793(79)81181-3. [DOI] [PubMed] [Google Scholar]
  33. Woudt L. P., Mager W. H., Beek J. G., Wassenaar G. M., Planta R. J. Structural and putative regulatory sequences of the gene encoding ribosomal protein L25 in Candida utilis. Curr Genet. 1987;12(3):193–198. doi: 10.1007/BF00436878. [DOI] [PubMed] [Google Scholar]
  34. el-Baradi T. T., Raué H. A., de Regt V. C., Verbree E. C., Planta R. J. Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E. coli 23S rRNA. EMBO J. 1985 Aug;4(8):2101–2107. doi: 10.1002/j.1460-2075.1985.tb03898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. el-Baradi T. T., de Regt V. C., Planta R. J., Nierhaus K. H., Raué H. A. Interaction of ribosomal proteins L25 from yeast and EL23 from E. coli with yeast 26S and mouse 28S rRNA. Biochimie. 1987 Sep;69(9):939–948. doi: 10.1016/0300-9084(87)90227-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES