Abstract
An oligod-d(T) 12-18 primed cDNA library has been prepared from Caldariomyces fumago mRNA. A clone containing a full-length insert was sequenced on the supercoiled plasmid, pBR322. The complete primary sequence of chloroperoxidase has been derived. We have also determined about 73% of the peptide sequence by amino acid sequencing. The DNA sequence data matches all of the available known peptide sequences. The mature polypeptide contains 300 amino acids having a combined molecular weight of 32,974 daltons. A putative signal peptide of 21 amino acids is proposed from DNA sequence data. The chloroperoxidase gene encodes three potential glycosylation sites recognized as Asn-X-Thr/Ser sequences. Three cysteine residues are found in the protein sequence. A small region around Cys87 bears a minimal homology to the active site of cytochrome P450cam. No other heme protein homologues can be detected. We propose that Cys87 serves as a thiolate ligand to the iron of heme prosthetic group. A rare arginine codon, AGG, is used three times out of twelve in contrast to the very infrequent use of this codon in E. coli or yeast.
Full text
PDF![8061](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/9a89d871c536/nar00289-0245.png)
![8062](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/2add5727990f/nar00289-0246.png)
![8063](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/4fa9eb79eae9/nar00289-0247.png)
![8064](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/8aeecd8cd624/nar00289-0248.png)
![8065](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/9fc5dcbf4a36/nar00289-0249.png)
![8066](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/a059fdef8a40/nar00289-0250.png)
![8067](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/c85d0aec75ed/nar00289-0251.png)
![8068](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/cd5d8f9a3822/nar00289-0252.png)
![8069](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/2672f269ff0c/nar00289-0253.png)
![8070](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/baece840749f/nar00289-0254.png)
![8071](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec6/311834/cdd67593d9f3/nar00289-0255.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bangcharoenpaurpong O., Champion P. M., Hall K. S., Hager L. P. Resonance Raman studies of isotopically labeled chloroperoxidase. Biochemistry. 1986 May 6;25(9):2374–2378. doi: 10.1021/bi00357a011. [DOI] [PubMed] [Google Scholar]
- Brown F. S., Hager L. P. Chloroperoxidase. IV. Evidence for an ionic electrophilic substitution mechanism. J Am Chem Soc. 1967 Feb 1;89(3):719–720. doi: 10.1021/ja00979a061. [DOI] [PubMed] [Google Scholar]
- Champion P. M., Chiang R., Münck E., Debrunner P., Hager L. P. Mössbauer investigations of high-spin ferrous heme proteins. II. Chloroperoxidase, horseradish peroxidase, and hemoglobin. Biochemistry. 1975 Sep 23;14(19):4159–4166. doi: 10.1021/bi00690a002. [DOI] [PubMed] [Google Scholar]
- Champion P. M., Münck E., Debrunner P. G., Hollenberg P. F., Hager L. P. Mössbauer investigations of chloroperoxidase and its halide complexes. Biochemistry. 1973 Jan 30;12(3):426–435. doi: 10.1021/bi00727a011. [DOI] [PubMed] [Google Scholar]
- Chiang R., Makino R., Spomer W. E., Hager L. P. Chloroperoxidase: P-450 type absorption in the absence of sulfhydryl groups. Biochemistry. 1975 Sep 23;14(19):4166–4171. doi: 10.1021/bi00690a003. [DOI] [PubMed] [Google Scholar]
- Dawson J. H., Trudell J. R., Barth G., Linder R. E., Bunnenberg E., Djerassi C., Chiang R., Hager L. P. Letter: Chloroperoxidase. Evidence for P-450 type heme environment from magnetic circular dichroism spectroscopy. J Am Chem Soc. 1976 Jun 9;98(12):3709–3710. doi: 10.1021/ja00428a055. [DOI] [PubMed] [Google Scholar]
- Deng G., Wu R. Terminal transferase: use of the tailing of DNA and for in vitro mutagenesis. Methods Enzymol. 1983;100:96–116. doi: 10.1016/0076-6879(83)00047-6. [DOI] [PubMed] [Google Scholar]
- Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
- Hager L. P., Morris D. R., Brown F. S., Eberwein H. Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem. 1966 Apr 25;241(8):1769–1777. [PubMed] [Google Scholar]
- Hollenberg P. F., Hager L. P., Blumberg W. E., Peisach J. An electron paramagnetic resonance study of the high and low spin forms of chloroperoxidase. J Biol Chem. 1980 May 25;255(10):4801–4807. [PubMed] [Google Scholar]
- Hollenberg P. F., Hager L. P. The P-450 nature of the carbon monoxide complex of ferrous chloroperoxidase. J Biol Chem. 1973 Apr 10;248(7):2630–2633. [PubMed] [Google Scholar]
- Libby R. D., Thomas J. A., Kaiser L. W., Hager L. P. Chloroperoxidase halogenation reactions. Chemical versus enzymic halogenating intermediates. J Biol Chem. 1982 May 10;257(9):5030–5037. [PubMed] [Google Scholar]
- Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
- Morris D. R., Hager L. P. Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem. 1966 Apr 25;241(8):1763–1768. [PubMed] [Google Scholar]
- Remba R. D., Champion P. M., Fitchen D. B., Chiang R., Hager L. P. Resonance Raman investigations of chloroperoxidase, horseradish peroxidase, and cytochrome c using Soret band laser excitation. Biochemistry. 1979 May 29;18(11):2280–2290. doi: 10.1021/bi00578a023. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sono M., Dawson J. H., Hager L. P. The generation of a hyperporphyrin spectrum upon thiol binding to ferric chloroperoxidase. Further evidence of endogenous thiolate ligation to the ferric enzyme. J Biol Chem. 1984 Nov 10;259(21):13209–13216. [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Tan Z. K., Ikuta S., Huang T., Dugaiczyk A., Itakura K. Solid-phase synthesis of polynucleotides. VIII: A simplified synthesis of oligodeoxyribonucleotides. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):383–391. doi: 10.1101/sqb.1983.047.01.045. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Morris D. R., Hager L. P. Chloroperoxidase. VII. Classical peroxidatic, catalatic, and halogenating forms of the enzyme. J Biol Chem. 1970 Jun;245(12):3129–3134. [PubMed] [Google Scholar]