Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Feb;91(2):469–476. doi: 10.1128/jb.91.2.469-476.1966

Synchronization of Bacteria by a Stationary-Phase Method1

Richard G Cutler a, John E Evans a
PMCID: PMC314882  PMID: 5327475

Abstract

Cutler, Richard G. (University of Houston, Houston, Tex.), and John E. Evans. Synchronization of bacteria by a stationary-phase method. J. Bacteriol. 91:469–476. 1966.—Cultures of Escherichia coli and Proteus vulgaris have been synchronized, with a high percentage phasing, in large volumes and at high cell densities by a method which takes advantage of a tendency of cells to synchronize themselves when entering the stationary phase of growth. The method consists of growing the bacteria to an early stationary phase, harvesting them quickly under minimal conditions of stress, and inoculating them into fresh medium at a dilution of about sevenfold. Cellular division is then partially synchronized. Four-generation cycles of a high percentage of phasing are obtained by repeating this procedure on the partially synchronized culture. Deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein analyses were made throughout all phases of the growth curve. Advantage has been taken of this method of synchrony to isolate selected segments of the bacterial genome in significant amounts. A working hypothesis to explain the synchrony suggests that the unfavorable conditions of growth as the bacteria near the stationary phase are detected by a decrease in the amino acid pool size, and that this results in a gradual decrease of DNA transcription activity through the inhibition of RNA polymerase by transfer RNA. The synchronizing method may be unique in producing cultures that grow both in cellular division and in genomic synchrony.

Full text

PDF
473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELYAVIN G. Cultural and serological phases of Proteus vulgaris. J Gen Microbiol. 1951 Feb;5(1):197–207. doi: 10.1099/00221287-5-1-197. [DOI] [PubMed] [Google Scholar]
  2. BROWNING I., BRITTAIN M. S., BERGENDAHL J. C. Synchronous and rhythmic reproduction of protozoa following inoculation. Tex Rep Biol Med. 1952;10(4):794–802. [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
  5. CUMMINGS D. J. MACROMOLECULAR SYNTHESIS DURING SYNCHRONOUS GROWTH OF ESCHERICHIA COLI B/R. Biochim Biophys Acta. 1965 Feb 8;95:341–350. doi: 10.1016/0005-2787(65)90498-3. [DOI] [PubMed] [Google Scholar]
  6. HELMSTETTER C. E., CUMMINGS D. J. BACTERIAL SYNCHRONIZATION BY SELECTION OF CELLS AT DIVISION. Proc Natl Acad Sci U S A. 1963 Oct;50:767–774. doi: 10.1073/pnas.50.4.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huntington E., Winslow C. E. Cell Size and Metabolic Activity at Various Phases of the Bacterial Culture Cycle. J Bacteriol. 1937 Feb;33(2):123–144. doi: 10.1128/jb.33.2.123-144.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  9. LARK C., LARK K. G. EVIDENCE FOR TWO DISTINCT ASPECTS OF THE MECHANISM REGULATING CHROMOSOME REPLICATION IN ESCHERICHIA COLI. J Mol Biol. 1964 Oct;10:120–136. doi: 10.1016/s0022-2836(64)80032-2. [DOI] [PubMed] [Google Scholar]
  10. LARK K. G., REPKO T., HOFFMAN E. J. THE EFFECT OF AMINO ACID DEPRIVATION ON SUBSEQUENT DEOXYRIBONUCLEIC ACID REPLICATION. Biochim Biophys Acta. 1963 Sep 17;76:9–24. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
  13. Masters M., Kuempel P. L., Pardee A. B. Enzyme synthesis in synchronous cultures of bacteria. Biochem Biophys Res Commun. 1964 Feb 18;15(1):38–42. doi: 10.1016/0006-291x(64)90099-3. [DOI] [PubMed] [Google Scholar]
  14. NAGATA T. Polarity and synchrony in the replication of DNA molecules of bacteria. Biochem Biophys Res Commun. 1962 Aug 7;8:348–351. doi: 10.1016/0006-291x(62)90005-0. [DOI] [PubMed] [Google Scholar]
  15. NAGATA T. The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1963 Apr;49:551–559. doi: 10.1073/pnas.49.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OISHI M., YOSHIKAWA H., SUEOKA N. SYNCHRONOUS AND DICHOTOMOUS REPLICATIONS OF THE BACILLUS SUBTILIS CHROMOSOME DURING SPORE GERMINATION. Nature. 1964 Dec 12;204:1069–1073. doi: 10.1038/2041069a0. [DOI] [PubMed] [Google Scholar]
  17. STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Winslow C. E., Walker H. H. THE EARLIER PHASES OF THE BACTERIAL CULTURE CYCLE. Bacteriol Rev. 1939 Dec;3(2):147–186. doi: 10.1128/br.3.2.147-186.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. YOSHIKAWA H., O'SULLIVAN A., SUEOKA N. SEQUENTIAL REPLICATION OF THE BACILLUS SUBTILIS CHROMOSOME. 3. REGULATION OF INITIATION. Proc Natl Acad Sci U S A. 1964 Oct;52:973–980. doi: 10.1073/pnas.52.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. YOSHIKAWA H., SUEOKA N. Sequential replication of the Bacillus subtilis chromosome. II. Isotopic transfer experiments. Proc Natl Acad Sci U S A. 1963 Jun;49:806–813. doi: 10.1073/pnas.49.6.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ZEUTHEN E. Artificial and induced periodicity in living cells. Adv Biol Med Phys. 1958;6:37–73. doi: 10.1016/b978-1-4832-3112-9.50005-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES