Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Apr;95(4):1212–1220. doi: 10.1128/jb.95.4.1212-1220.1968

Effect of Chloramphenicol on the Synthesis and Stability of Ribonucleic Acid in Bacillus subtilis

Robert A Lazzarini 1, Edith Santangelo 1
PMCID: PMC315074  PMID: 4967191

Abstract

The effect of chloramphenicol on the synthesis and accumulation of ribonucleic acid (RNA) in Bacillus subtilis was studied. In the presence of chloramphenicol, transfer RNA and ribosomal RNA were synthesized as rapidly 2 to 3 hr after challenge as they were just prior to the addition of the antibiotic. However, under the same conditions, net RNA accumulation ceased after only 30 to 45 min. The failure to accumulate RNA after this time resulted from a rapid degradation of ribosomal RNA synthesized in the presence of chloramphenicol and a slow degradation of mature ribosomes. Since transfer RNA was not appreciably degraded, the ratio of transfer RNA to total RNA increased during the challenge.

Full text

PDF
1215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODMER W. F., GRETHER S. UPTAKE AND INCORPORATION OF THYMINE, THYMIDINE, URACIL, URIDINE, AND 5-FLUOROURACIL INTO THE NUCLEIC ACIDS OF BACILLUS SUBTILIS. J Bacteriol. 1965 Apr;89:1011–1014. doi: 10.1128/jb.89.4.1011-1014.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRITTEN R. J., McCARTHY B. J., ROBERTS R. B. The synthesis of ribosomes in E. coli. IV. The synthesis of ribosomal protein and the assembly of ribosomes. Biophys J. 1962 Jan;2:83–93. doi: 10.1016/s0006-3495(62)86842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DONNELLAN J. E., Jr, NAGS E. H., LEVINSON H. S. CHEMICALLY DEFINED, SYNTHETIC MEDIA FOR SPORULATION AND FOR GERMINATION AND GROWTH OF BACILLUS SUBTILIS. J Bacteriol. 1964 Feb;87:332–336. doi: 10.1128/jb.87.2.332-336.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dubin D. T., Elkort A. T. A direct demonstration of the metabolic turnover of chloramphenicol RNA. Biochim Biophys Acta. 1965 Jun 8;103(2):355–358. doi: 10.1016/0005-2787(65)90180-2. [DOI] [PubMed] [Google Scholar]
  5. Edlin G., Neuhard J. Regulation of nucleoside triphosphate pools in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):225–230. doi: 10.1016/0022-2836(67)90328-2. [DOI] [PubMed] [Google Scholar]
  6. Ezekiel D. H., Valulis B. Increase in functional transfer ribonucleic acid during prolonged incubation in chloramphenicol. Biochim Biophys Acta. 1965 Sep 6;108(1):135–136. doi: 10.1016/0005-2787(65)90116-4. [DOI] [PubMed] [Google Scholar]
  7. HOSOKAWA K., NOMURA M. INCOMPLETE RIBOSOMES PRODUCED IN CHLORAMPHENICOL- AND PUROMYCIN-INHIBITED ESCHERICHIA COLI. J Mol Biol. 1965 May;12:225–241. doi: 10.1016/s0022-2836(65)80296-0. [DOI] [PubMed] [Google Scholar]
  8. Iwabuchi M., Kono M., Oumi T., Osawa S. The RNA components in ribonucleoprotein particles occurring during the course of ribosome formation in Escherichia coli. Biochim Biophys Acta. 1965 Oct 11;108(2):211–219. doi: 10.1016/0005-2787(65)90005-5. [DOI] [PubMed] [Google Scholar]
  9. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  10. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MANDELSTAM J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):110–119. doi: 10.1042/bj0690110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  13. NOMURA M., HOSOKAWA K. BIOSYNTHESIS OF RIBOSOMES: FATE OF CHLORAMPHENICOL PARTICLES AND OF PULSE-LABELED RNA IN ESCHERICHIA COLI. J Mol Biol. 1965 May;12:242–265. doi: 10.1016/s0022-2836(65)80297-2. [DOI] [PubMed] [Google Scholar]
  14. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  15. Schleich T., Goldstein J. Gel filtration heterogeneity of Escherichia coli soluble RNA. J Mol Biol. 1966 Jan;15(1):136–146. doi: 10.1016/s0022-2836(66)80215-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES