Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Jul;90(1):54–62. doi: 10.1128/jb.90.1.54-62.1965

Resistance of Escherichia coli to Penicillins I. Genetic Study of Some Ampicillin-Resistant Mutants

Kerstin G Eriksson-Grennberg a, Hans G Boman a, J A Torbjörn Jansson a,1, Sone Thorén a
PMCID: PMC315594  PMID: 16562043

Abstract

Eriksson-Grennberg, Kerstin G. (University of Uppsala, Uppsala, Sweden), Hans G. Boman, J. A. Torbjörn Jansson, and Sone Thorén. Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bacteriol. 90:54–62. 1965.—A number of ampicillin-resistant mutants have been isolated and characterized. Of these strains, two groups have been genetically investigated: members of one group, which are moderately resistant to ampicillin (Ampr10) carry mutations in a locus which we have designated ampA; another strain, which is resistant to high levels (50 μg/ml) of ampicillin, is a multistep mutant for which a genotype cannot yet be written. The phenotype of this strain has been designated Ampr50. The location of ampA was studied by the interrupted-conjugation technique, with argF, metB, mtl, and serA as reference markers. The phenotypic expression was the same for ampA and argF. These experiments, as well as recombination without selection for ampicillin resistance, indicate that ampA is located between argF and pyrB. “Broken slopes” on the recombinant curves and failure to demonstrate cotransduction make a more accurate mapping difficult. Phage P1bt transduced ampA from resistant donors to sensitive recipient strains with a frequency of 5 × 10−7. The ampA locus segregated in conjugation and transduction experiments with an Ampr50 donor strain, but neither method gave a genetic transfer of high resistance to ampicillin. Penicillinase activity was demonstrated in two independent mutants carrying the ampA locus.

Full text

PDF
55

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM E. P., NEWTON G. G. New penicillins, cephalosporin C, and penicillinase. Endeavour. 1961 Apr;20:92–100. [PubMed] [Google Scholar]
  2. ADELBERG E. A., BURNS S. N. Genetic variation in the sex factor of Escherichia coli. J Bacteriol. 1960 Mar;79:321–330. doi: 10.1128/jb.79.3.321-330.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BOMAN H. G., ERIKSSON K. G. Penicillin-induced lysis in Escherichia coli. J Gen Microbiol. 1963 Jun;31:339–352. doi: 10.1099/00221287-31-3-339. [DOI] [PubMed] [Google Scholar]
  4. Banic S. Transduction to Penicillin and Chloramphenicol Resistance in Salmonella Typhimurium. Genetics. 1959 May;44(3):449–455. doi: 10.1093/genetics/44.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Demerec M. Production of Staphylococcus Strains Resistant to Various Concentrations of Penicillin. Proc Natl Acad Sci U S A. 1945 Jan;31(1):16–24. doi: 10.1073/pnas.31.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ECHOLS H., GAREN A., GAREN S., TORRIANI A. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol. 1961 Aug;3:425–438. doi: 10.1016/s0022-2836(61)80055-7. [DOI] [PubMed] [Google Scholar]
  7. ENGLISH A. R., McBRIDE T. J., HUANG H. T. Microbial resistance to penicillin as related to penicillinase or penicillin acylase activity. Proc Soc Exp Biol Med. 1960 Aug-Sep;104:547–549. doi: 10.3181/00379727-104-25903. [DOI] [PubMed] [Google Scholar]
  8. GROSS J., ENGLESBERG E. Determination of the order of mutational sites governing L-arabinose utilization in Escherichia coli B/r bv transduction with phage Plbt. Virology. 1959 Nov;9:314–331. doi: 10.1016/0042-6822(59)90125-4. [DOI] [PubMed] [Google Scholar]
  9. HOLT R. J., STEWART G. T. PENICILLIN AMIDASE FROM COLIFORMS: ITS EXTRACTION AND SOME CHARACTERISTICS. Nature. 1964 Feb 22;201:824–824. doi: 10.1038/201824a0. [DOI] [PubMed] [Google Scholar]
  10. HOLT R. J., STEWART G. T. PRODUCTION OF AMIDASE AND BETA-LACTAMASE BY BACTERIA. J Gen Microbiol. 1964 Aug;36:203–213. doi: 10.1099/00221287-36-2-203. [DOI] [PubMed] [Google Scholar]
  11. HOTCHKISS R. D. Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spring Harb Symp Quant Biol. 1951;16:457–461. doi: 10.1101/sqb.1951.016.01.032. [DOI] [PubMed] [Google Scholar]
  12. JACOB F., WOLLMAN E. L. Genetic and physical determinations of chromosomal segments in Escherichia coli. Symp Soc Exp Biol. 1958;12:75–92. [PubMed] [Google Scholar]
  13. JANSSON J. A. A DIRECT SPECTROPHOTOMETRIC ASSAY FOR PENICILLIN BETA-LACTAMASE (PENICILLINASE). Biochim Biophys Acta. 1965 Apr 26;99:171–172. doi: 10.1016/s0926-6593(65)80018-2. [DOI] [PubMed] [Google Scholar]
  14. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  16. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MOYED H. S. BIOCHEMICAL MECHANISMS OF DRUG RESISTANCE. Annu Rev Microbiol. 1964;18:347–366. doi: 10.1146/annurev.mi.18.100164.002023. [DOI] [PubMed] [Google Scholar]
  18. PERCIVAL A., BRUMFITT W., DE LOUVOIS J. THE ROLE OF PENICILLINASE IN DETERMINING NATURAL AND ACQUIRED RESISTANCE OF GRAM-NEGATIVE BACTERIA TO PENICILLINS. J Gen Microbiol. 1963 Jul;32:77–89. doi: 10.1099/00221287-32-1-77. [DOI] [PubMed] [Google Scholar]
  19. SCHNEIDER H., FALKOW S. CHARACTERIZATION OF AN HFR STRAIN OF SHIGELLA FLEXNERI. J Bacteriol. 1964 Sep;88:682–689. doi: 10.1128/jb.88.3.682-689.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. TAYLOR A. L., THOMAN M. S. THE GENETIC MAP OF ESCHERICHIA COLI K-12. Genetics. 1964 Oct;50:659–677. doi: 10.1093/genetics/50.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor A L, Adelberg E A. Linkage Analysis with Very High Frequency Males of Escherichia Coli. Genetics. 1960 Sep;45(9):1233–1243. doi: 10.1093/genetics/45.9.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  24. WATANABE T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963 Mar;27:87–115. doi: 10.1128/br.27.1.87-115.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WOLLMAN E. L., JACOB F., HAYES W. Conjugation and genetic recombination in Escherichia coli K-12. Cold Spring Harb Symp Quant Biol. 1956;21:141–162. doi: 10.1101/sqb.1956.021.01.012. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES