Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Aug;90(2):357–369. doi: 10.1128/jb.90.2.357-369.1965

Linkage Relationships of Genes Controlling Isoleucine, Valine, and Leucine Biosynthesis in Bacillus subtilis

M Barat 1, C Anagnostopoulos 1, A-M Schneider 1
PMCID: PMC315651  PMID: 14329448

Abstract

Barat, M. (Centre National de la Recherche Scientifique, Gif-sur-Yvette, Seine et Oise, France), C. Anagnostopoulos, and A.-M. Schneider. Linkage relationships of genes controlling isoleucine, valine, and leucine biosynthesis in Bacillus subtilis. J. Bacteriol.90:357–369. 1965.—In Bacillus subtilis, the genetic loci controlling isoleucine and valine biosynthesis are not all clustered. Some of them were located on two distinct transforming deoxyribonucleic acid “molecules.” One of these molecules (the “ileilva2–4-met segment”) carries the threonine deaminase and the dihydroxy acid dehydrase loci linked to methionine markers. The other (the “ilva1–3-leu segment”) bears the reductoisomerase locus and one or more loci involved in leucine synthesis. A phenylalanine marker was also shown to be weakly linked to this latter group. In transduction mediated by phage PBS-1, these groups are transferred jointly with other gene clusters. The phage appears to convey chromosome fragments considerably longer than the transforming “molecules.” The genetic maps of both the above segments were extended by transduction. Some groups previously studied by transformation can be placed in the following linear order: the ile-ilva2–4-met segment, the cluster of loci involved in aromatic amino acid synthesis (try segment), and a lysine locus. An arginine locus is cotransduced with the phe-ilva1–2-leu segment. Recombination frequencies between linked markers are much lower in transduction by this phage than in transformation.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANAGNOSTOPOULOS C., BARAT M., SCHNEIDER A. M. ETUDE, PAR TRANSFORMATION, DE DEUX GROUPES DE G'ENES R'EGISSANT LA BIOSYNTH'ESE DE L'ISOLEUCINE, DE LA VALINE ET DE LA LEUCINE CHEZ BACILLUS SUBTILIS. C R Hebd Seances Acad Sci. 1964 Jan 13;258:749–752. [PubMed] [Google Scholar]
  2. ANAGNOSTOPOULOS C., CRAWFORD I. P. Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Mar 15;47:378–390. doi: 10.1073/pnas.47.3.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ARMSTRONG F. B., WAGNER R. P. ISOLEUCINE-VALINE REQUIRING MUTANTS OF SALMONELLA TYPHIMURIUM. Genetics. 1964 Nov;50:957–965. doi: 10.1093/genetics/50.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EPHRATI-ELIZUR E., SRINIVASAN P. R., ZAMENHOF S. Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Jan 15;47:56–63. doi: 10.1073/pnas.47.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glanville E V, Demerec M. Threonine, Isoleucine, and Isoleucine-Valine Mutants of Salmonella Typhimurium. Genetics. 1960 Oct;45(10):1359–1374. doi: 10.1093/genetics/45.10.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KELLY M. S., PRITCHARD R. H. UNSTABLE LINKAGE BETWEEN GENETIC MARKERS IN TRANSFORMATION. J Bacteriol. 1965 May;89:1314–1321. doi: 10.1128/jb.89.5.1314-1321.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LACKS S., HOTCHKISS R. D. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960 Apr 22;39:508–518. doi: 10.1016/0006-3002(60)90205-5. [DOI] [PubMed] [Google Scholar]
  11. MAHLER I., NEUMANN I. M., MARMUR J. Studies of genetic-units controlling arginine biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1963 May 28;72:69–79. [PubMed] [Google Scholar]
  12. MICHEL J. F., SICARD A. M., EPHRUSSI-TAYLOR H. COMPARAISON DE DEUX M'ETHODES D''ETUDE DES LIAISONS FAIBLES DANS LA TRANSFORMATION DU PNEUMOCOQUE. Exp Cell Res. 1964 Nov;36:368–389. doi: 10.1016/0014-4827(64)90216-2. [DOI] [PubMed] [Google Scholar]
  13. NESTER E. W., LEDERBERG J. Linkage of genetic units of Bacillus subtilis in DNA transformation. Proc Natl Acad Sci U S A. 1961 Jan 15;47:52–55. doi: 10.1073/pnas.47.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NESTER E. W., STOCKER B. A. BIOSYNTHETIC LATENCY IN EARLY STAGES OF DEOXYRIBONUCLEIC ACIDTRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1963 Oct;86:785–796. doi: 10.1128/jb.86.4.785-796.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nester E W, Schafer M, Lederberg J. Gene Linkage in DNA Transfer: A Cluster of Genes Concerned with Aromatic Biosynthesis in Bacillus Subtilis. Genetics. 1963 Apr;48(4):529–551. doi: 10.1093/genetics/48.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OISHI M., YOSHIKAWA H., SUEOKA N. SYNCHRONOUS AND DICHOTOMOUS REPLICATIONS OF THE BACILLUS SUBTILIS CHROMOSOME DURING SPORE GERMINATION. Nature. 1964 Dec 12;204:1069–1073. doi: 10.1038/2041069a0. [DOI] [PubMed] [Google Scholar]
  17. PERRY H. M., Jr Chelation therapy in circulatory and sclerosing diseases. Fed Proc. 1961 Sep;20(3):254–257. [PubMed] [Google Scholar]
  18. PITTARD J., LOUTIT J. S., ADELBERG E. A. GENE TRANSFER BY F' STRAINS OF ESCHERICHIA COLI K-12. I. DELAY IN INITIATION OF CHROMOSOME TRANSFER. J Bacteriol. 1963 Jun;85:1394–1401. doi: 10.1128/jb.85.6.1394-1401.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. I. GENETIC DEREPRESSION OF ENZYME FORMATION. J Bacteriol. 1964 Mar;87:566–573. doi: 10.1128/jb.87.3.566-573.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STRACK H. B., FREESE E. B., FREESE E. COMPARISON OF MUTATION AND INACTIVATION RATES INDUCED IN BACTERIOPHAGE AND TRANSFORMING DNA BY VARIOUS MUTAGENS. Mutat Res. 1964 May;106:10–21. doi: 10.1016/0027-5107(64)90048-x. [DOI] [PubMed] [Google Scholar]
  21. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. TAKAHASHI I. Genetic transduction in Bacillus subtilis. Biochem Biophys Res Commun. 1961 Jun 28;5:171–175. doi: 10.1016/0006-291x(61)90104-8. [DOI] [PubMed] [Google Scholar]
  23. TAKAHASHI I. Transducing phages for Bacillus subtilis. J Gen Microbiol. 1963 May;31:211–217. doi: 10.1099/00221287-31-2-211. [DOI] [PubMed] [Google Scholar]
  24. THORNE C. B. Transduction in Bacillus subtilis. J Bacteriol. 1962 Jan;83:106–111. doi: 10.1128/jb.83.1.106-111.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES