Abstract
Yeast two-hybrid (Y2H) and isothermal titration calorimetry (ITC) methods were used to further study the mutational effect of non-erythroid alpha spectrin (αII) at position 22 in tetramer formation with beta spectrin (βII). Four mutants, αII-V22D, V22F, V22M and V22W, were studied. For the Y2H system, we used plasmids pGBKT7, consisting of the cDNA of the first 359 residues at the N-terminal region of αII, and pGADT7, consisting of the cDNA of residues 1697–2145 at the C-terminal region of βII. Strain AH109 yeast cells were used for colony growth assays and strain Y187 was used for β-galactosidase activity assays. Y2H results showed that the C-terminal region of βII interacts with the N-terminal region of αII, either the wild type, or those with V22F, V22M or V22W mutations. The V22D mutant did not interact with βII. For ITC studies, we used recombinant proteins of the αII N-terminal fragment and of the erythroid beta spectrin (βI) C-terminal fragment; results showed that the Kd values for V22F were similar to those for the wild-type (about 7 nM), whereas the Kd values were about 35 nM for V22M and about 90 nM for V22W. We were not able to detect any binding for V22D with ITC methods. This study clearly demonstrates that the single mutation at position 22 of αII, a region critical to the function of nonerythroid α spectrin, may lead to a reduced level of spectrin tetramers and abnormal spectrin-based membrane skeleton. These abnormalities could cause abnormal neural activities in cells.
Key words: Spectrin tetramerization subunit interactions, Yeast two-hybrid, Isothermal titration calorimetry
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Abbreviations used
- αII
non-erythroid alpha spectrin
- αII-N
a recombinant protein consisting of the first 359 residues at the N-terminal region of αII
- αII-N-V22Δ
a recombinant protein with a single residue replacement at position 22 of αII-N
- βI
erythroid beta spectrin
- βI-C
a recombinant protein consisting of residues 1898–2083 at the C-terminal region of βI
- βII
non-erythroid beta spectrin
- βII-C
a recombinant protein consisting of residues 1697–2145 at the C-terminal region of βII
- CD
circular dichroism
- ITC
isothermal titration calorimetry
- Kd
equilibrium dissociation constant
- pAD
yeast plasmid pGADT7
- pBD
yeast plasmid pGBKT7
- Y2H
yeast two-hybrid
References
- 1.Sumandea C.A., Fung L.W.-M. Mutational effects at the tetramerization site of nonerythroid alpha spectrin. Mol. Brain Res. 2005;136:81–90. doi: 10.1016/j.molbrainres.2005.01.003. [DOI] [PubMed] [Google Scholar]
- 2.Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340:245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
- 3.Fields S. Interactive learning: Lessons from two hybrids over two decades. Proteomics. 2009;9:5209–5213. doi: 10.1002/pmic.200900236. [DOI] [PubMed] [Google Scholar]
- 4.Hu X., Kang S., Chen X., Shoemaker C.B., Jin M.M. Yeast surface two-hybrid for quantitative in vivo detection of protein-protein interactions via the secretory pathway. J. Biol. Chem. 2009;284:16369–16376. doi: 10.1074/jbc.M109.001743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Oh Y., Fung L.W.-M. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin. Cell. Mol. Biol. Lett. 2007;12:604–620. doi: 10.2478/s11658-007-0028-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Humphrey J.S., Salim A., Erdos M.R., Collins F.S., Brody L.C., Klausner R.D. Human BRCA1 inhibits growth in yeast: Potential use in diagnostic testing. Proc. Natl. Acad. Sci. U.S.A. 1997;94:5820–5825. doi: 10.1073/pnas.94.11.5820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Estojak J., Brent R., Golemis E.A. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 1995;15:5820–5829. doi: 10.1128/mcb.15.10.5820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Jabbour A.M., Puryer M.A., Yu J.Y., Lithgow T., Riffkin C.D., Ashley D.M., Vaux D.L., Ekert P.G., Hawkins C.J. Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1homologue CED-4, but can interact with EGL-1. J. Cell Sci. 2006;119:2572–2582. doi: 10.1242/jcs.02985. [DOI] [PubMed] [Google Scholar]
- 9.Coyne R.S., McDonald H.B., Edgemon K., Brody L.C. Functional characterization of BRCA1 sequence variants using a yeast small colony phenotype assay. Cancer Biol. Ther. 2004;3:453–457. doi: 10.4161/cbt.3.5.809. [DOI] [PubMed] [Google Scholar]
- 10.Stavolone L., Herzog E., Leclerc D., Hohn T. Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J. Virol. 2001;75:7739–7743. doi: 10.1128/JVI.75.16.7739-7743.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Ma L.-Y., King G., Rothfield L. Mapping the MinE site involved in interaction with the MinD division site selection protein of Escherichia coli. J. Bacteriol. 2003;185:4948–4955. doi: 10.1128/JB.185.16.4948-4955.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Larin D., Mekios C., Das K., Ross B., Yang A.-S., Gilliam T.C. Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J. Biol. Chem. 1999;274:28497–28504. doi: 10.1074/jbc.274.40.28497. [DOI] [PubMed] [Google Scholar]
- 13.Grootjans J.J., Reekmans G., Ceulemans H., David G. Syntenin-Syndecan binding requires syndecan-synteny and the co-operation of both PDZ domain of syntenin. J. Biol. Chem. 2000;275:19933–19941. doi: 10.1074/jbc.M002459200. [DOI] [PubMed] [Google Scholar]
- 14.Crowther L.J., Yamagata A., Craig L., Tainer J.A., Donnenberg M.S. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J. Biol. Chem. 2005;280:24839–24848. doi: 10.1074/jbc.M500253200. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 15.Mehboob S., Song Y., Witek M., Long F., Santarsiero B.D., Johnson M. E., Fung L.W.-M. Crystal structure of the nonerythroid α-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J. Biol. Chem. 2010;285:14572–14587. doi: 10.1074/jbc.M109.080028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kang J., Song Y., Sevinc A., Fung L.W.-M. Important residue (G46) in erythroid spectrin tetramer formation. Cell Mol. Biol. Lett. 2010;15:46–54. doi: 10.2478/s11658-009-0031-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Lam V.Q., Antoniou C., Rolius R., Fung L.W. Association studies of erythroid alpha-spectrin at the tetramerization site. Br. J. Haematol. 2009;147:392–395. doi: 10.1111/j.1365-2141.2009.07876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Li Q., Fung L.W.-M. Structural and dynamic study of the tetramerization region of non-erythroid α-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance. Biochemistry. 2009;48:206–215. doi: 10.1021/bi8013032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Mehboob S., Jacob J., May M., Kotula L., Thiyagarajan P., Johnson M. E., Fung L. W.-M. Structural analysis of the αN-terminal region of erythroid and noneryhtroid spectrins by small-angle X-ray scattering. Biochemistry. 2003;42:14702–14710. doi: 10.1021/bi0353833. [DOI] [PubMed] [Google Scholar]
- 20.Mehboob S., Luo B.-H., Fu W., Johnson M.E., Fung L.W.-M. Conformational studies of the tetramerization site of human erythroid spectrin by cysteine-scanning spin-labeling EPR methods. Biochemistry. 2005;44:15898–15905. doi: 10.1021/bi051009m. [DOI] [PubMed] [Google Scholar]
- 21.Mehboob S., Luo B.-H., Patel B.M., Fung L.W.-M. αβ spectrin coiled coil association at the tetramerization site. Biochemistry. 2001;40:12457–12464. doi: 10.1021/bi010984k. [DOI] [PubMed] [Google Scholar]
- 22.Lecomte M.C., Garbarz M., Gautero H., Bournier O., Galand C., Boivin P., Dhermy D. Molecular basis of clinical and morphological heterogeneity in hereditary elliptocytosis (HE) with spectrin alpha I variant. Br. J. Haematol. 1993;85:584–595. doi: 10.1111/j.1365-2141.1993.tb03352.x. [DOI] [PubMed] [Google Scholar]
- 23.Voas M.G., Lyons D.A., Naylor S.G., Arana N., Rasband M.N., Talbot W.S. αII-Spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr. Biol. 2007;17:562–568. doi: 10.1016/j.cub.2007.01.071. [DOI] [PubMed] [Google Scholar]
- 24.Benz P.M., Blume C., Moebius J., Oschatz C., Schuh K., Sickmann A., Walter U., Feller S.M., Renne T. Cytoskeleton assembly at endothelial cell-cell contacts is regulated by αII-spectrin-VASP complexes. J. Cell Biol. 2008;180:205–219. doi: 10.1083/jcb.200709181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Bignone P.A., King M.D., Pinder J.C., Baines A.J. Phosphorylation of a threonine unique to the short C-terminal isoform of βII-spectrin links regulation of α-β-spectrin interaction to neuritogenesis. J. Biol. Chem. 2007;282:888–896. doi: 10.1074/jbc.M605920200. [DOI] [PubMed] [Google Scholar]