Abstract
Two computational methods for estimating the cell cycle phase distribution of a budding yeast (Saccharomyces cerevisiae) cell population are presented. The first one is a nonparametric method that is based on the analysis of DNA content in the individual cells of the population. The DNA content is measured with a fluorescence-activated cell sorter (FACS). The second method is based on budding index analysis. An automated image analysis method is presented for the task of detecting the cells and buds. The proposed methods can be used to obtain quantitative information on the cell cycle phase distribution of a budding yeast S. cerevisiae population. They therefore provide a solid basis for obtaining the complementary information needed in deconvolution of gene expression data. As a case study, both methods are tested with data that were obtained in a time series experiment with S. cerevisiae. The details of the time series experiment as well as the image and FACS data obtained in the experiment can be found in the online additional material at http://www.cs.tut.fi/sgn/csb/yeastdistrib/.
Contributor Information
Antti Niemistö, Email: antti.niemisto@tut.fi.
Matti Nykter, Email: matti.nykter@tut.fi.
Tommi Aho, Email: tommi.aho@tut.fi.
Henna Jalovaara, Email: henna.jalovaara@medicel.com.
Kalle Marjanen, Email: kalle.marjanen@tut.fi.
Miika Ahdesmäki, Email: miika.ahdesmaki@tut.fi.
Pekka Ruusuvuori, Email: pekka.ruusuvuori@tut.fi.
Mikko Tiainen, Email: mikko.tiainen@helsinki.fi.
Marja-Leena Linne, Email: marja-leena.linne@tut.fi.
Olli Yli-Harja, Email: olli.yli-harja@tut.fi.
References
- Bornholdt S. Systems biology: less is more in modeling large genetic networks. Science. 2005;310(5747):449–451. doi: 10.1126/science.1119959. [DOI] [PubMed] [Google Scholar]
- Lähdesmäki H, Shmulevich I, Yli-Harja O. On learning gene regulatory networks under the Boolean network model. Machine Learning. 2003;52(1-2):147–167. [Google Scholar]
- Nachman I, Regev A, Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics. 2004;20(1):i248–i256. doi: 10.1093/bioinformatics/bth941. [DOI] [PubMed] [Google Scholar]
- Tegnér J, Yeung MKS, Hasty J, Collins JJ. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(10):5944–5949. doi: 10.1073/pnas.0933416100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spellman PT, Sherlock G, Zhang MQ. et al. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell. 1998;9(12):3273–3297. doi: 10.1091/mbc.9.12.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lähdesmäki H, Huttunen H, Aho T. et al. Estimation and inversion of the effects of cell population asynchrony in gene expression time-series. Signal Processing. 2003;83(4):835–858. doi: 10.1016/S0165-1684(02)00471-1. [DOI] [Google Scholar]
- Bar-Joseph Z, Farkash S, Gifford DK, Simon I, Rosenfeld R. Deconvolving cell cycle expression data with complementary information. Bioinformatics. 2004;20(1):i23–i30. doi: 10.1093/bioinformatics/bth915. [DOI] [PubMed] [Google Scholar]
- Whitfield ML, Sherlock G, Saldanha AJ. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell. 2002;13(6):1977–2000. doi: 10.1091/mbc.02-02-0030.. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lengronne A, Pasero P, Bensimon A, Schwob E. Monitoring S phase progression globally and locally using BrdU incorporation in yeast strains. Nucleic Acids Research. 2001;29(7):1433–1442. doi: 10.1093/nar/29.7.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito TL, Ohtani M, Sawai H. et al. SCMD: saccharomyces cerevisiae morphological database. Nucleic Acids Research. 2004;32(Database):D319–D322. doi: 10.1093/nar/gkh113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niemistö A, Aho T, Thesleff H, Estimation of population effects in synchronized budding yeast experiments. Image Processing: Algorithms and Systems II, Proceedings of SPIE, Santa Clara, Calif, USA, January 2003. pp. 448–459.
- Niemistö A, Nykter M, Aho T, Distribution estimation of synchronized budding yeast population. Proceedings of the Winter International Synposium on Information and Communication Technologies (WISICT '04), Cancun, Mexico, January 2004. pp. 243–248.
- Ohtani M, Saka A, Sano F, Ohya Y, Morishita S. Development of image processing program for yeast cell morphology. Journal of Bioinformatics and Computational Biology . 2004;1(4):695–709. doi: 10.1142/S0219720004000363. [DOI] [PubMed] [Google Scholar]
- Cooper S. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine. 2. Meyers RA, editor. Vol. 1. John Wiley & Sons, New York, NY, USA; 2004. Bacterial growth and division. [Google Scholar]
- Niemistö A, Nykter M, Aho T, Computational methods for estimation of cell cycle phase distributions of yeast cells: online supplement. 2007. http://www.cs.tut.fi/sgn/csb/yeastdistrib/ [DOI] [PMC free article] [PubMed]
- Balthasar D, Erdmann T, Pellenz J, Rehrmann V, Zeppen J, Priese L. Real-time detection of arbitrary objects in alternating industrial environments. Proccedings of the 12th Scandinavian Conference on Image Analysis, Bergen, Norway, June 2001. pp. 321–328.
- Futcher B. Cell cycle synchronization. Methods in Cell Science. 1999;21(2-3):79–86. doi: 10.1023/a:1009872403440. [DOI] [PubMed] [Google Scholar]