Abstract
Chromatin core particles near physiological ionic strength undergo a reversible transition induced by changes in pH near neutrality. While sedimentation studies indicate no significant effect on size or shape, changes in tyrosine fluorescence anisotropy and in circular dichroism suggest a somewhat looser structure at high pH. Further support of this suggestion is given by high salt dissociation experiments; at pH 8 core particles begin to show changes at lower salt concentration than at pH 6. The pH transition appears unaffected by the presence of Mg2+ but can be blocked by crosslinking of the histones. A possible relationship is suggested between this transition and increases in intracellular pH which correlate with enhancement in several aspects of cellular activity including DNA replication.
Full text
PDF![4351](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/c1ae4e087c56/nar00328-0301.png)
![4352](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/a5ee8679b5f0/nar00328-0302.png)
![4353](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/83d4575f8ac6/nar00328-0303.png)
![4354](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/6478b22a0f80/nar00328-0304.png)
![4355](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/3fd95fd5f8bd/nar00328-0305.png)
![4356](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/4206560ed37b/nar00328-0306.png)
![4357](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/75909b144efd/nar00328-0307.png)
![4358](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/64ef03075822/nar00328-0308.png)
![4359](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/318836/b0d19b736329/nar00328-0309.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gerson D. F., Kiefer H. Intracellular pH and the cell cycle of mitogen-stimulated murine lymphocytes. J Cell Physiol. 1983 Jan;114(1):132–136. doi: 10.1002/jcp.1041140121. [DOI] [PubMed] [Google Scholar]
- Gordon V. C., Knobler C. M., Olins D. E., Schumaker V. N. Conformational changes of the chromatin subunit. Proc Natl Acad Sci U S A. 1978 Feb;75(2):660–663. doi: 10.1073/pnas.75.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labhart P., Thoma F., Koller T. Structural changes of soluble rat liver chromatin induced by the shift in pH from 7 to 9. Eur J Cell Biol. 1981 Aug;25(1):19–27. [PubMed] [Google Scholar]
- Libertini L. J., Small E. W. Effects of pH on low-salt transition of chromatin core particles. Biochemistry. 1982 Jul 6;21(14):3327–3334. doi: 10.1021/bi00257a013. [DOI] [PubMed] [Google Scholar]
- Wilhelm M. L., Wilhelm F. X. Conformation of nucleosome core particles and chromatin in high salt concentration. Biochemistry. 1980 Sep 2;19(18):4327–4331. doi: 10.1021/bi00559a028. [DOI] [PubMed] [Google Scholar]
- Wu H. M., Dattagupta N., Hogan M., Crothers D. M. Structural changes of nucleosomes in low-salt concentrations. Biochemistry. 1979 Sep 4;18(18):3960–3965. doi: 10.1021/bi00585a018. [DOI] [PubMed] [Google Scholar]
- Zama M., Olins D. E., Prescott B., Thomas G. J., Jr Nucleosome conformation: pH and organic solvent effects. Nucleic Acids Res. 1978 Oct;5(10):3881–3897. doi: 10.1093/nar/5.10.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]