Abstract
In the light of the biological significance of thymine photodimers , studies of the energetics of the dodecanucleotide fragment d( CGCGAATTCGCG )2 have been carried out using the methods of molecular mechanics, with and without incorporation of a thymine dimer in the cis-syn configuration. The results of the calculations suggest that the thymine dimerized structures show no gross distortion in the double helix with the conformational changes relative to the normal B-DNA double helix restricted largely to the dimer region. The energetics of dTp[]dT reveal a number of conformers which are energetically almost equally favorable and are, as a group, qualitatively consistent with NMR studies on this molecule. The biological implications of the results of the conformational studies, reported here, have been examined vis-a-vis the currently available models for the recognition of DNA "damage" by repair enzymes.
Full text
PDF![4789](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/8bbebefd84df/nar00329-0360.png)
![4790](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/984fc85f8c03/nar00329-0361.png)
![4791](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/aa80dde360dd/nar00329-0362.png)
![4792](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/029482069def/nar00329-0363.png)
![4793](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/039d9ffd7ff2/nar00329-0364.png)
![4794](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/57abfdddfe6d/nar00329-0365.png)
![4795](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/398e28f005f1/nar00329-0366.png)
![4796](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/a7d6bef2a32f/nar00329-0367.png)
![4797](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/b50a6a1b3f25/nar00329-0368.png)
![4798](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/33baaa7d4678/nar00329-0369.png)
![4799](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/48fe961325d0/nar00329-0370.png)
![4800](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/ec9dfb0356bb/nar00329-0371.png)
![4801](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/7402e840c60f/nar00329-0372.png)
![4802](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/36815f1991ed/nar00329-0373.png)
![4803](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/b23b183c84b4/nar00329-0374.png)
![4804](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/701d4aaeb85b/nar00329-0375.png)
![4805](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/a58153c1c53b/nar00329-0376.png)
![4806](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/31136d38051a/nar00329-0377.png)
![4807](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/318875/a1262dde40f0/nar00329-0378.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E., Jensen L. H. The crystal and molecular structure of the cis-syn photodimer of uracil. Acta Crystallogr B. 1970 Sep 15;26(9):1326–1334. doi: 10.1107/s0567740870004077. [DOI] [PubMed] [Google Scholar]
- Camerman N., Camerman A. Crystal and molecular structure of photodimer A of 1,3-dimethylthymine (the isomer in irradiated deoxyribonucleic acid). J Am Chem Soc. 1970 Apr 22;92(8):2523–2527. doi: 10.1021/ja00711a050. [DOI] [PubMed] [Google Scholar]
- Crick F. H., Klug A. Kinky helix. Nature. 1975 Jun 12;255(5509):530–533. doi: 10.1038/255530a0. [DOI] [PubMed] [Google Scholar]
- Flippen J. L., Karle I. L. The crystal structure of a thymine trimer, C15H20N6O7-H2O, a photoproduct of thymine. J Am Chem Soc. 1971 Jun 2;93(11):2762–2768. doi: 10.1021/ja00740a029. [DOI] [PubMed] [Google Scholar]
- Gordon L. K., Haseltine W. A. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases. J Biol Chem. 1980 Dec 25;255(24):12047–12050. [PubMed] [Google Scholar]
- Haseltine W. A. Ultraviolet light repair and mutagenesis revisited. Cell. 1983 May;33(1):13–17. doi: 10.1016/0092-8674(83)90329-x. [DOI] [PubMed] [Google Scholar]
- Keepers J. W., Kollman P. A., Weiner P. K., James T. L. Molecular mechanical studies of DNA flexibility: coupled backbone torsion angles and base-pair openings. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5537–5541. doi: 10.1073/pnas.79.18.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kollman P. A., Weiner P. K., Dearing A. Studies of nucleotide conformations and interactions. The relative stabilities of double-helical B-DNA sequence isomers. Biopolymers. 1981 Dec;20(12):2583–2621. doi: 10.1002/bip.1981.360201208. [DOI] [PubMed] [Google Scholar]
- Marx J. L. DNA repair: new clues to carcinogenesis. Science. 1978 May 5;200(4341):518–521. doi: 10.1126/science.200.4341.518. [DOI] [PubMed] [Google Scholar]
- Ruffieux A., Schultz W. Dopaminergic activation of reticulata neurones in the substantia nigra. Nature. 1980 May 22;285(5762):240–241. doi: 10.1038/285240a0. [DOI] [PubMed] [Google Scholar]
- Sancar A., Rupp W. D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983 May;33(1):249–260. doi: 10.1016/0092-8674(83)90354-9. [DOI] [PubMed] [Google Scholar]
- Sasisekharan V., Pattabiraman N. Structure of DNA predicted from stereochemistry of nucleoside derivatives. Nature. 1978 Sep 14;275(5676):159–162. doi: 10.1038/275159a0. [DOI] [PubMed] [Google Scholar]