Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jan;78(1):138–142. doi: 10.1073/pnas.78.1.138

Prophage (phi 80) induction in Escherichia coli K-12 by specific deoxyoligonucleotides.

R M Irbe, L M Morin, M Oishi
PMCID: PMC319006  PMID: 7017707

Abstract

A cell preparation that is permeable to proteins and oligonucleotides yet produces infectious phage particles after induction treatments was obtained by plasmolysis of Escherichia coli cells lysogenic for phi 80. When the permeabilized cells were exposed to specific oligo(deoxynucleotides), prophage (phi 80) was induced during further incubation. Of the dinucleotides tested, only d(A-G), d(G-G), and d(I-G) induced prophage. The essential base sequence of the deoxydinucleotides for the induction was determined to be deoxy(purine-G). Among oligo(deoxynucleotides) with unique base composition examined, only oligo(deoxyguanylates) exhibited the inducing activity. Although this specific oligo(deoxynucleotide)-triggered induction occurred in recB- cells, the induction was not detected in recA- cells or in the cells lysogenic for induction-negative phi 80(ind-). Possible biological significance of the oligo(deoxynucleotide)-triggered prophage induction is discussed.

Full text

PDF
138

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büchi H., Khorana H. G. CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J Mol Biol. 1972 Dec 28;72(2):251–288. doi: 10.1016/0022-2836(72)90148-9. [DOI] [PubMed] [Google Scholar]
  2. Craig N. L., Roberts J. W. E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature. 1980 Jan 3;283(5742):26–30. doi: 10.1038/283026a0. [DOI] [PubMed] [Google Scholar]
  3. Gudas L. J., Pardee A. B. Model for regulation of Escherichia coli DNA repair functions. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2330–2334. doi: 10.1073/pnas.72.6.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Khorana H. G., Agarwal K. L., Büchi H., Caruthers M. H., Gupta N. K., Kleppe K., Kumar A., Otsuka E., RajBhandary U. L., Van de Sande J. H. Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol. 1972 Dec 28;72(2):209–217. doi: 10.1016/0022-2836(72)90146-5. [DOI] [PubMed] [Google Scholar]
  5. Kumar A., Khorana H. G. 108. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of an undecadeoxynucleotide, a decadeoxynucleotide and an octadeoxynucleotide corresponding to the nucleotide sequences 7 to 27. J Mol Biol. 1972 Dec 28;72(2):329–349. doi: 10.1016/0022-2836(72)90151-9. [DOI] [PubMed] [Google Scholar]
  6. Lohrmann R., Söll D., Hayatsu H., Ohtsuka E., Khorana H. G. Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J Am Chem Soc. 1966 Feb 20;88(4):819–829. doi: 10.1021/ja00956a039. [DOI] [PubMed] [Google Scholar]
  7. McEntee K., Hesse J. E., Epstein W. Identification and radiochemical purification of the recA protein of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3979–3983. doi: 10.1073/pnas.73.11.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Narang S. A., Bhanot O. S., Dheer S. K., Goodchild J., Michniewicz J. J. Separation of synthetic deoxyribo-oligonucleotides by thin layer chromatography. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1248–1254. doi: 10.1016/0006-291x(70)90221-4. [DOI] [PubMed] [Google Scholar]
  9. Narang S. A., Michniewicz J. J., Dheer S. K. Polynucleotides. I. Use of sephadex in the preparation of thymidine homodeoxyribopolynucleotides bearing a 5'-phosphomonoester end group. J Am Chem Soc. 1969 Feb 12;91(4):936–943. doi: 10.1021/ja01032a025. [DOI] [PubMed] [Google Scholar]
  10. Narang S. A., Michniewicz J. J. Thin-layer chromatography of synthetic polydeoxyribonucleotides. 3. Anal Biochem. 1972 Oct;49(2):379–392. doi: 10.1016/0003-2697(72)90441-1. [DOI] [PubMed] [Google Scholar]
  11. Ogawa T., Wabiko H., Tsurimoto T., Horii T., Masukata H., Ogawa H. Characteristics of purified recA protein and the regulation of its synthesis in vivo. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):909–915. doi: 10.1101/sqb.1979.043.01.099. [DOI] [PubMed] [Google Scholar]
  12. Oishi M., Smith C. L., Friefeld B. Molecular events and molecules that lead to induction of prophage and SOS functions. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):897–907. doi: 10.1101/sqb.1979.043.01.098. [DOI] [PubMed] [Google Scholar]
  13. Oishi M., Smith C. L. Inactivation of phage repressor in a permeable cell system: role of recBC DNase in induction. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3569–3573. doi: 10.1073/pnas.75.8.3569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oka A., Ozeki H., Inselburg J. Integration and excision of phi-80pt prophage in Escherichia coli. I. Replacement of tryptophan genes of phi-80pt with the host alleles through the lysogenic process. Virology. 1971 Dec;46(3):556–566. doi: 10.1016/0042-6822(71)90059-6. [DOI] [PubMed] [Google Scholar]
  15. Roberts J. W., Roberts C. W., Craig N. L., Phizicky E. M. Activity of the Escherichia coli recA-gene product. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):917–920. doi: 10.1101/sqb.1979.043.01.100. [DOI] [PubMed] [Google Scholar]
  16. Smith C. L., Oishi M. Early events and mechanisms in the induction of bacterial SOS functions: analysis of the phage repressor inactivation process in vivo. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1657–1661. doi: 10.1073/pnas.75.4.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith C. L., Oishi M. The molecular mechanism of virus induction. I. A procedure for the biochemical assay of prophage induction. Mol Gen Genet. 1976 Oct 18;148(2):131–138. doi: 10.1007/BF00268376. [DOI] [PubMed] [Google Scholar]
  18. Weber H., Khorana H. G. CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J Mol Biol. 1972 Dec 28;72(2):219–249. doi: 10.1016/0022-2836(72)90147-7. [DOI] [PubMed] [Google Scholar]
  19. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamamoto M., Ishizawa M., Endo H. Ribonucleic acid-permeable mutant of Escherichia coli. J Mol Biol. 1971 May 28;58(1):103–115. doi: 10.1016/0022-2836(71)90235-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES