Skip to main content
BMJ Open logoLink to BMJ Open
. 2011 Sep 30;1(2):e000226. doi: 10.1136/bmjopen-2011-000226

The association of maternal age with infant mortality, child anthropometric failure, diarrhoea and anaemia for first births: evidence from 55 low- and middle-income countries

Jocelyn E Finlay 1,, Emre Özaltin 1, David Canning 1
PMCID: PMC3191600  PMID: 22021886

Abstract

Objective

To examine the association between maternal age at first birth and infant mortality, stunting, underweight, wasting, diarrhoea and anaemia in children in low- and middle-income countries.

Design

Cross-sectional analysis of nationally representative household samples. A modified Poisson regression model is used to estimate unadjusted and adjusted RR ratios.

Setting

Low- and middle-income countries.

Population

First births to women aged 12–35 where this birth occurred 12–60 months prior to interview. The sample for analysing infant mortality is comprised of 176 583 children in 55 low- and middle-income countries across 118 Demographic and Health Surveys conducted between 1990 and 2008.

Main outcome measures

Infant mortality in children under 12 months and stunting, underweight, wasting, diarrhoea and anaemia in children under 5 years.

Results

The investigation reveals two salient findings. First, in the sample of women who had their first birth between the ages of 12 and 35, the risk of poor child health outcome is lowest for women who have their first birth between the ages of 27 and 29. Second, the results indicate that both biological and social mechanisms play a role in explaining why children of young mothers have poorer outcomes.

Conclusions

The first-born children of adolescent mothers are the most vulnerable to infant mortality and poor child health outcomes. Additionally, first time mothers up to the age of 27 have a higher risk of having a child who has stunting, diarrhoea and moderate or severe anaemia. Maternal and child health programs should take account of this increased risk even for mothers in their early 20s. Increasing the age at first birth in developing countries may have large benefits in terms of child health.

Article summary

Article focus

  • The prevalence of nutritional deficiencies underscores the need to understand the basic determinants of poor child health outcomes.

  • Young age of the mother at their first birth is one such determinant due to biological and social mechanisms.

  • Comparison across low- to middle-income countries enables generalisation of cross-sectional associations between the age of the mother and child health outcomes.

Key messages

  • Child health outcomes remain poor in many low- to middle-income countries.

  • The age of the mother at their first birth is a key correlate of child health outcomes.

  • Teen mothers have children with the worst health outcomes and children of mothers who have their first birth in their early 20s are also at risk of poor health outcomes compared to first time mothers in their late 20s.

Strengths and limitations of this study

  • One of the strengths of this study is the breadth of countries included in the sample.

  • In applying secondary source data, the study is subject to omitted variable and recall bias.

Introduction

Progress towards reaching Millennium Development Goal 4 focuses on measurable reduction in under-5 mortality. In low- to middle-income countries, this also means “revitalising efforts against… diarrhoea, while bolstering nutrition…”.1 The risk of under-5 mortality and the prevalence of diarrhoeal disease and nutritional deficiencies that manifest themselves in outcomes such as stunting, wasting, underweight and anaemia in young children, underscore the need to understand the basic determinants of these poor child health outcomes. In India alone, 6.0% (95% CI 5.7% to 6.3%) of children die before their 5th birthday. In the same population, for children under 5, 42.2% are underweight, 47.8% are stunted, 19.7% are wasted and 69.1% are anaemic.2 A cross-country study highlights that these prevalence percentages are the norm throughout low- to middle-income countries.3 A report on adolescent girls in low- to middle-income countries by the Center for Global Development4 highlights the risk to child health associated with young motherhood. When considering child health, the report draws on intergenerational influences on child health outcomes rather than a cross-sectional observation of children alone. The effect of the age of the mother at first birth on child health outcomes has been explored in several studies in low- to middle-income countries.5–14 In the case of India, Raj et al13 showed that children born to mothers who were married below the age of 18 were at a higher risk of stunting and underweight compared to children of women who had married at age 18 or older. In another study, using the World Fertility Survey, Trussell and Hammerslough14 also found that the mother's age at first birth was a significant risk factor for infant mortality in Sri Lanka. In low- to middle-income countries, 26.5% of women have their first birth before the age of 18, and 83.1% before age 24.15 Much debate, particularly with regard to US population samples, concerns the social versus physiological influence of young motherhood on child health outcomes.16–22 Young age can be a proxy for “short stature, low body weight in relation to height, and greater likelihood of inadequate weight gain during pregnancy along with difficulty of delivery”.23 These physiological factors point to vulnerability to poor child health outcomes. Women in low- to middle-income countries who have children at a young age are also more likely to be, and remain, poor and uneducated.4 These social factors also disadvantage young mothers in terms of their child's health outcomes. Analysis that generalises across and within countries, rather than focusing on a sample from a single country, provides standardised analyses and results to assess age as a proxy for physiological immaturity and social disadvantage and its effect on child health outcomes. Earlier work by Hobcraft12 in 1992 examined the effect of age at first birth on child survival in a number of countries using Demographic and Health Surveys (DHS) available at that time. Given the prevalence of poor child health outcomes in low- to middle-income countries, and not just high infant mortality, studies that extend the monitoring of child health beyond infant mortality provide valuable information regarding health disparities and progress in achieving Millennium Development Goal 4 and its sub-goals relating to child health.

The purpose of the current study is to assess the association between maternal age at first birth and child health outcomes: infant mortality, stunting, underweight, wasting, diarrhoea and anaemia. By controlling for socioeconomic factors, the physiological effect of young motherhood on child health can be separated out from the social disadvantage that young mothers are also likely to face. The findings could critically inform family planning policies and programs aimed at delaying first birth beyond the teenage years.

Methods

Data source

Information from 118 DHS conducted in 55 countries between 1990 and 2008 provided the data for the analysis in this study.24 The DHS are nationally representative household sample surveys that measure population, health, socioeconomic and anthropometric indicators, emphasising maternal and child health.25 The DHS are an important data source for studying population health across developing countries due to their extensive coverage, comparability and data quality.26–28 To ensure standardisation and comparability across diverse sites and times, in conducting the DHS, Macro ICF employs intense interviewer training, standardised measurement tools and techniques, an identical core questionnaire and instrument pretesting.29 Each participating country's report details pretesting and quality assurance measures by survey.15 The DHS is modular in structure, and in addition to the core questionnaire, a set of country-relevant sections and country-specific variables are included. The DHS provides data with standardised variables across surveys.30

Sampling plan

The DHS involves stratified cluster randomised samples of households.31 The sampling frame was stratified by urban and rural status and additionally by country-specific geographic or administrative regions. Within each stratified area, random clusters of households were drawn from a list of all enumeration areas taken from a population census. In the second stage of sampling, all private households within the cluster were listed (institutions excluded) and an average of 25 houses within a cluster were selected by equal probability systematic sampling to be surveyed. Detailed sampling plans are available from survey final reports.15

Within each sampled household, a household questionnaire was administered and women eligible for a more detailed women's survey were identified. In most surveys all women between the ages of 15 and 49 were interviewed. In a limited number of surveys, the target group is women aged 10–49 or 15–45, or ever-married women. The child anthropometry module was conducted in a selection of the Standard DHS.32 The DHS provides weights for calculating nationally representative statistics.

Study population and sample size

Our sample consists of children born to women who had their first birth 12–60 months before the survey. The lower bound of 12 months is applied so that each child has equal exposure to 1 year of life and we can accurately calculate infant mortality (deaths within the first year of life). Detailed child health measures are only taken for children up to 60 months of age which establishes our upper bound (the upper bound is 60 months rather than 59 months to conform to the WHO age categories). Only the first birth for each woman is included in our sample; for multiple first births we only use data from the first recorded birth, although we control for this being a part of multiple births. The initial sample is 288 752 children across 72 countries from 181 surveys. Infant mortality status is not available for 5313 of these children, mother's age at their first birth is missing in 1564 and 103 563 observations are missing covariates since not all surveys collect data on our covariates of interest, yielding the final sample of 176 583 children across 55 countries and 118 surveys for our mortality study. The age of the mother is restricted to 12–35 as only 13 of the mothers had their children below the age of 12 and 1716 had their first birth at 36 or older. Details of the samples for the child health outcomes are given in online supplementary appendix table A1. These samples are smaller because the child anthropometric module was not conducted in a number of surveys. The data comprise 119 018 children with stunting, 120 246 with wasting, 122 680 with underweight, 135 121 with diarrhoea and 31 520 with anaemia.

Outcome measures

In this study, we focus on six outcomes: infant mortality, child stunting, underweight, wasting, diarrhoea and moderate to severe anaemia (which is abbreviated to moderate anaemia throughout the paper). All health measures are for children born 12–60 months before the interview. Infant mortality is a measure of whether or not the child survived to age 1 year. The birth history in the DHS individual recode files records the survival status of a woman's (the respondent's) child. A child's death and age at death are reported by the mother. For the measure of infant mortality, we count infants who died within the first year of life (<12 months). We also measure anthropometric failure. First, we calculate a z score given by the child's height minus the median height for that child's age and sex in a reference population. Then we divide the result by the standard deviation of the same age and sex in the WHO reference population of healthy children in developing countries.33 Stunting is defined as a height z score of less than −2. Similarly, underweight is defined as a z score less than −2 for weight relative to children of the same sex and age in the reference population. Wasting is defined as a z score less than −2 for weight-for-height relative to children of the same sex and age in the reference population. Biologically impossible values are defined by the WHO for height (stunting) as z scores <−6 or >6, for weight (underweight) as <−6 or >5 and for weight-for-height (wasting) as <−5 or >5. Observations with biologically impossible values are dropped from our samples.

The outcome of child diarrhoea was based on the mother's recall of whether their child had had diarrhoea within the 2 weeks prior to interview. Anaemia was measured by a fingerstick blood test from the child at the time of interview. The first two drops of blood were discarded and the third drop was taken as a sample. The blood drop was analysed using the HemoCue system. Adjustments for altitude were taken into account, and children with a haemoglobin concentration <10 g/dl were considered as having at least moderate anaemia.

Exposure and covariates

In this study we classify the covariates into four different categories: child characteristics, maternal characteristics, paternal characteristics and, finally, household and social factors. The child characteristics are child sex, singleton or multiple births and the age of the child in months. The covariate for the age of the child is not included in the infant mortality model (which depends only on survival to age 1 year) but is included in all other models. Child age in months is categorised into four groups: 12–23, 24–35, 36–47 and 48–60.

The maternal factors that we include in this study are mother's age, her height and her educational attainment. Our exposure of interest is the mother's age at her first birth. The age of the mother at the first birth is a variable reported in the DHS recode manual30 and is calculated from the CMC (century month code) of the date of the first birth and the CMC of the date of the birth of the mother. Age is categorised into 3-year intervals: ages 12–14, 15–17, 18–20, 21–23, 24–26, 27–29, 30–32 and 33–35. Online supplementary appendix table A2 shows the effect of the age of the mother at first birth, and age squared, regressed on the child health outcomes. This non-linear, continuous age variable model shows that the poor child health outcomes are minimised at age 29 for the infant mortality outcome. However, a quadratic age variable may not capture all potential heterogeneity in the effect of maternal age on child health outcomes. Furthermore, we use maternal age grouped into 3-year intervals, as opposed to single year age groups, due to the small number of infant deaths occurring for single age groups. Grouping 3 years together provides a sufficient group size to minimise random fluctuations in mortality rates. Not all surveys measure women's height. In our main results, we do not control for height but, since maternal height has been shown to be a predictor of child health,3 we do perform a sensitivity analysis where we see the effect of adding maternal height as a covariate and restrict the sample to observations where the mother's height is available. The height of the mother is in five categories: 100–144 cm, 145–149 cm, 150–154 cm, 155–159 cm and 160–200 cm. Maternal education is classified into three categories: no education or less than completed primary, completed primary, and completed secondary or higher. Paternal covariates are whether the women has a partner or not and, if so, the partner's age and educational level. Partners are typically older than the women and the partner's age is split into six categories: 12–17, 18–23, 24–29, 30–35, 36–41 and 42–59 years. Partner's education follows the same groupings as coded for the mother's education: no education or less than completed primary, completed primary, and completed secondary or higher.

Household and social factors include the wealth quintile of the household and whether the household is in a rural or an urban location. The wealth quintile is a within-country measure of the wealth of the household relative to other households in that survey based on its ownership of household assets. This measure of wealth, based on Filmer and Pritchett,34 is a linear index of asset ownership indicators using factor analysis to derive the weights. This measure has been standardised by Measure DHS across most of the DHS and is widely used as a measure of relative wealth within a country. Given we have country fixed effects and year of birth time dummies in the regression analyses, this wealth index is an indicator of how each household's wealth deviates from its own country's mean wealth. We also include indicators for piped water to the house and a flush toilet in the household. In addition to these household measures, we include a cluster level measure: the percentage of living children aged 12–60 months who have received measles vaccination in the cluster. We do not have vaccination data for children who have died and the cluster level measles vaccination percentage allows us to control for neighbourhood health system inputs. The cluster level average may be subject to the ecological fallacy, and we do not claim to measure the causal effect of measles vaccination on vaccinated children. Measles vaccine is administered between 9 and 12 months of age and is likely to have only a limited direct effect on infant mortality (deaths between 0 and 12 months). Rather, we think of vaccine coverage as being a proxy for healthcare provision, although there may also be a herd-immunity effect on younger children due to lower overall prevalence.

Statistical analysis

To measure the RR of a given outcome, we apply a modified Poisson regression following the methodology of Zou.35 We estimate the unadjusted model only controlling for country fixed effects and year of birth time dummies to account for the uneven repeated cross-section. We then estimate the adjusted model and include the covariates. While summary statistics are weighted to take into account the multistage sampling design, the regressions are not weighted.36

Results

Summary statistics

Average age at first birth across the 118 DHS is 20.18. This ranges from an average age of 17.65 in Bangladesh in 1996, to an average of 23.02 in Jordan in 2007 (table 1). Across the 118 surveys included in this study, infant mortality is as high as 17.01% of all first-born children in Mali in 1995. In 30 of the 118 surveys, average stunting is 50% or higher and 79 of the 118 surveys have stunting prevalence of 30% or higher. Madagascar in 1997 has the highest average stunting prevalence with 65.46% of first-born children being classified as stunted according to the WHO standards. Wasting (weight-for-height) is not as prevalent as stunting: 26 of the 118 surveys record an average prevalence of 10% or more. Underweight (weight-for-age) is as high as 50.01% in Niger in 1998. With regard to underweight, 32 of the 118 surveys record a prevalence of 25% or more. An average of 36.91% of first-born children in Niger in 1998 are reported to have had diarrhoea within the 2 weeks prior to the DHS interview, but across the 118 surveys the average is 13.64%. Anaemia was not recorded in all of the surveys, but in the 38 surveys that do record anaemia, average prevalence ranges from a low of 7.99% of first-born children in Egypt in 2000, to 71.55% in Burkina Faso in 2003. The average is 32.6% across the 118 surveys (table 1).

Table 1.

Weighted mean child health outcomes and 95% CIs by survey

Survey year Sample size Age at first birth Infant mortality
Stunting
Wasting
Underweight
Diarrhoea
Anaemia
N Mean (SD) Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
Armenia 2000 510 21.04 (3.61) 1.51 0.77 to 2.93 16.17 12.27 to 21.00 1.40 0.55 to 3.56 1.02 0.38 to 2.65 8.53 6.20 to 11.63 8.29 5.92 to 11.49
Armenia 2005 504 21.90 (3.15) 1.47 0.51 to 4.15 17.19 11.07 to 25.72 3.12 1.63 to 5.88 3.57 1.96 to 6.41 15.60 12.00 to 20.05 15.78 10.21 to 23.57
Azerbaijan 2006 719 22.54 (3.97) 3.11 1.73 to 5.55 25.32 20.80 to 30.45 3.93 2.31 to 6.61 7.40 4.81 to 11.21 9.79 7.00 to 13.53 17.82 13.55 to 23.07
Bangladesh 1996 1309 17.65 (3.24) 9.60 8.11 to 11.33 57.25 53.52 to 60.89 16.80 14.37 to 19.53 48.81 45.41 to 52.22 8.13 6.43 to 10.23
Bangladesh 1999 1596 18.20 (3.49) 9.86 8.45 to 11.48 56.07 52.65 to 59.44 10.46 8.69 to 12.53 40.37 37.31 to 43.51 6.30 5.04 to 7.85
Bangladesh 2004 1633 18.04 (3.29) 7.80 6.49 to 9.35 52.60 49.58 to 55.60 14.43 12.29 to 16.87 42.73 39.70 to 45.81 5.89 4.70 to 7.37
Bangladesh 2007 1637 18.48 (3.35) 6.14 4.82 to 7.79 43.55 40.14 to 47.01 15.12 12.90 to 17.64 40.91 37.40 to 44.52 9.98 8.24 to 12.03
Benin 1996 594 19.57 (3.02) 8.40 6.46 to 10.86 38.94 32.70 to 45.58 14.76 10.67 to 20.08 27.60 22.44 to 33.45 27.46 21.91 to 33.80
Benin 2001 781 20.25 (3.55) 8.27 6.49 to 10.48 40.96 36.75 to 45.31 7.25 5.53 to 9.46 21.17 17.80 to 24.99 14.54 11.70 to 17.92 55.57 49.74 to 61.26
Benin 2006 2112 20.42 (3.57) 7.34 6.23 to 8.63 45.43 42.40 to 48.48 5.43 4.25 to 6.91 17.54 15.58 to 19.69 9.41 8.06 to 10.95 48.72 44.21 to 53.26
Bolivia 1993 813 20.82 (4.05) 3.36 2.29 to 4.90 29.95 25.21 to 35.16 4.17 2.47 to 6.96 10.60 7.75 to 14.34 31.69 27.25 to 36.50
Bolivia 1998 1224 20.85 (4.16) 4.54 3.42 to 6.00 24.24 21.38 to 27.35 0.56 0.24 to 1.32 3.43 2.47 to 4.73 18.66 16.17 to 21.44
Bolivia 2003 1987 20.48 (4.03) 3.65 2.75 to 4.83 26.30 23.44 to 29.38 0.81 0.48 to 1.39 2.68 1.94 to 3.69 22.07 19.78 to 24.53 22.67 18.54 to 27.40
Brazil 1996 1280 21.12 (4.53) 2.15 1.48 to 3.13 8.76 7.11 to 10.73 2.43 1.48 to 3.96 2.60 1.76 to 3.82 9.62 7.96 to 11.58
Burkina Faso 1992 771 19.12 (2.91) 12.50 10.06 to 15.44 45.86 41.34 to 50.46 15.69 12.40 to 19.66 33.99 29.51 to 38.78 12.85 10.33 to 15.87
Burkina Faso 1998 730 19.21 (3.00) 14.94 12.25 to 18.09 53.12 48.15 to 58.03 13.36 10.62 to 16.67 39.39 35.29 to 43.64 12.64 10.02 to 15.83
Burkina Faso 2003 1414 19.19 (2.87) 9.07 7.48 to 10.95 48.54 44.36 to 52.74 17.97 15.29 to 21.00 33.47 29.58 to 37.60 20.82 17.94 to 24.02 71.55 65.66 to 76.78
Cameroon 1991 498 18.62 (3.16) 6.67 4.50 to 9.78 35.90 29.95 to 42.33 4.38 2.41 to 7.86 16.73 11.94 to 22.96 12.10 8.78 to 16.45
Cameroon 1998 542 18.87 (3.18) 7.27 5.29 to 9.91 43.56 37.05 to 50.30 4.52 2.21 to 9.03 17.92 12.98 to 24.22 20.23 15.66 to 25.74
Cameroon 2004 1146 19.13 (3.45) 6.26 4.90 to 7.97 35.95 31.39 to 40.79 6.20 4.23 to 9.00 13.57 10.26 to 17.73 16.99 13.40 to 21.29 45.37 40.19 to 50.65
Central African Rep. 1994 653 18.78 (3.44) 13.62 11.25 to 16.41 49.09 43.70 to 54.50 7.51 4.83 to 11.48 22.06 17.35 to 27.62 28.00 23.40 to 33.12
Chad 1996 1030 18.30 (2.98) 12.37 10.37 to 14.70 50.36 46.24 to 54.47 13.68 11.22 to 16.58 33.95 30.05 to 38.08 21.38 18.25 to 24.89
Chad 2004 733 18.18 (3.09) 14.00 10.86 to 17.85 42.26 37.35 to 47.34 11.23 8.51 to 14.68 36.86 29.66 to 44.69 22.83 18.16 to 28.29
Colombia 1995 1405 21.60 (4.43) 1.58 1.05 to 2.38 15.73 13.68 to 18.01 0.92 0.50 to 1.68 4.54 3.42 to 6.01 12.44 10.75 to 14.35
Colombia 2000 1358 21.32 (4.70) 1.85 1.26 to 2.70 15.38 13.06 to 18.03 0.49 0.22 to 1.09 3.19 2.21 to 4.59 12.77 10.94 to 14.85
Colombia 2004 3998 20.70 (4.49) 1.04 0.75 to 1.44 12.36 10.92 to 13.96 0.85 0.59 to 1.24 3.15 2.50 to 3.98 14.14 12.63 to 15.79
Comoros 1996 234 21.20 (4.42) 6.84 4.40 to 10.47 47.27 37.21 to 57.56 10.81 6.25 to 18.05 19.64 12.36 to 29.77 16.81 10.75 to 25.30
Congo, Dem. Rep. 2007 1180 19.86 (3.50) 9.97 7.87 to 12.55 45.30 38.16 to 52.65 8.54 5.39 to 13.26 25.79 21.49 to 30.61 17.11 12.48 to 23.00 45.44 38.80 to 52.25
Congo, Rep. 2005 940 19.66 (3.63) 8.85 6.69 to 11.63 36.58 31.42 to 42.07 5.64 3.85 to 8.20 12.69 9.38 to 16.94 13.49 10.72 to 16.84 34.19 27.82 to 41.19
Cote d'Ivoire 1994 927 18.28 (3.21) 11.83 9.50 to 14.63 45.40 40.31 to 50.60 8.55 6.03 to 12.00 24.23 19.89 to 29.17 17.89 14.34 to 22.10
Cote d'Ivoire 1998 96 18.50 (3.18) 6.75 2.85 to 15.16 36.39 23.85 to 51.09 4.53 1.49 to 12.96 17.29 10.34 to 27.47 20.92 13.39 to 31.16
Dominican Republic 1996 1035 20.31 (4.34) 3.42 2.35 to 4.97 8.21 6.30 to 10.65 1.79 0.88 to 3.60 2.85 1.85 to 4.38 10.81 8.59 to 13.51
Dominican Republic 2002 2611 19.99 (4.19) 2.00 1.41 to 2.84 8.13 6.56 to 10.04 1.11 0.66 to 1.86 2.35 1.66 to 3.31 13.91 12.04 to 16.02
Dominican Republic 2007 2632 20.14 (4.29) 2.00 1.38 to 2.88 7.59 6.03 to 9.52 1.40 0.93 to 2.10 2.67 1.68 to 4.20 14.66 12.74 to 16.82
Dominican Republic 2007 164 18.72 (3.27) 1.99 0.58 to 6.52 15.18 9.25 to 23.93 1.08 0.27 to 4.28 4.03 1.85 to 8.55 22.09 15.04 to 31.24
Egypt, Arab Rep. 1995 2136 21.41 (3.95) 4.92 3.94 to 6.14 30.90 27.95 to 34.01 3.67 2.70 to 4.97 7.48 6.11 to 9.11 13.87 12.04 to 15.93
Egypt, Arab Rep. 2000 2370 21.81 (3.73) 3.20 2.55 to 3.99 21.40 19.35 to 23.61 2.19 1.58 to 3.03 2.40 1.82 to 3.17 5.85 4.88 to 7.00 7.99 6.40 to 9.94
Egypt, Arab Rep. 2003 1502 21.45 (3.70) 3.94 3.01 to 5.16 16.87 14.65 to 19.36 4.17 3.03 to 5.72 7.18 5.75 to 8.93 19.40 17.10 to 21.92
Egypt, Arab Rep. 2005 3226 21.78 (3.69) 2.53 1.99 to 3.21 19.10 17.35 to 20.97 4.15 3.29 to 5.23 3.39 2.72 to 4.21 16.20 14.67 to 17.86 20.08 17.18 to 23.32
Egypt, Arab Rep. 2008 2618 21.91 (3.72) 1.88 1.41 to 2.51 30.29 28.01 to 32.67 7.28 6.05 to 8.73 5.26 4.31 to 6.39 6.63 5.66 to 7.74
Ethiopia 2000 1689 20.09 (3.64) 11.37 9.40 to 13.70 58.70 54.76 to 62.53 9.29 7.17 to 11.95 37.03 33.21 to 41.03 22.00 18.84 to 25.53
Ethiopia 2005 1206 19.55 (3.63) 7.59 5.67 to 10.08 48.86 42.72 to 55.04 10.38 7.47 to 14.26 33.03 27.97 to 38.53 15.79 12.11 to 20.34 28.82 23.44 to 34.88
Gabon 2000 709 18.31 (3.21) 5.10 3.60 to 7.19 30.15 25.72 to 34.99 2.40 1.31 to 4.34 7.57 5.60 to 10.16 21.01 17.52 to 24.98
Ghana 1993 427 20.45 (3.51) 3.04 1.75 to 5.24 42.36 35.78 to 49.22 8.70 5.69 to 13.07 20.09 15.52 to 25.58 14.10 10.22 to 19.15
Ghana 1998 531 20.72 (3.52) 4.76 3.22 to 6.96 33.92 29.21 to 38.98 7.52 5.46 to 10.26 20.99 17.56 to 24.88 16.21 13.12 to 19.86
Ghana 2003 492 20.92 (3.71) 5.81 4.03 to 8.31 36.27 31.08 to 41.79 6.36 4.35 to 9.21 19.35 15.61 to 23.73 15.96 12.40 to 20.29 52.42 46.87 to 57.91
Ghana 2008 499 21.19 (4.19) 4.51 3.05 to 6.63 35.08 29.58 to 41.00 6.80 4.47 to 10.21 14.88 11.24 to 19.44 20.50 16.69 to 24.92 50.44 44.47 to 56.40
Guatemala 1995 1454 19.52 (3.67) 5.38 4.15 to 6.95 50.10 45.63 to 54.57 3.90 2.75 to 5.52 16.96 14.31 to 20.00 21.36 18.19 to 24.92
Guinea 1999 743 18.32 (3.36) 10.82 8.73 to 13.35 37.23 32.89 to 41.79 6.31 4.47 to 8.83 19.86 16.59 to 23.58 22.56 19.45 to 26.00
Guinea 2005 666 18.77 (3.72) 7.40 5.59 to 9.74 43.81 37.73 to 50.09 10.06 6.85 to 14.54 26.52 21.40 to 32.36 17.18 13.55 to 21.53 58.57 52.14 to 64.73
Haiti 1994 514 21.19 (4.18) 9.24 6.84 to 12.39 33.89 28.47 to 39.78 5.65 3.83 to 8.26 20.68 16.67 to 25.36 24.12 19.99 to 28.80
Haiti 2005 1000 21.19 (4.44) 5.52 4.09 to 7.41 23.71 19.13 to 29.00 9.22 6.50 to 12.92 16.45 12.85 to 20.82 17.80 13.50 to 23.12 34.56 29.27 to 40.26
Honduras 2005 2390 19.70 (3.82) 1.68 1.22 to 2.32 23.09 20.90 to 25.43 1.26 0.80 to 1.96 6.73 5.55 to 8.13 15.76 14.10 to 17.57 12.30 10.69 to 14.12
India 1992 12 919 19.93 (3.55) 8.02 7.44 to 8.64 58.80 56.94 to 60.63 18.02 16.66 to 19.47 48.55 46.72 to 50.37 5.34 4.79 to 5.95
India 1998 12 763 20.12 (3.66) 7.11 6.58 to 7.68 52.52 50.67 to 54.36 15.99 14.77 to 17.29 41.41 39.66 to 43.18 17.38 16.22 to 18.61
India 2005 13 112 21.13 (3.86) 6.27 5.71 to 6.87 44.60 43.17 to 46.04 16.23 15.25 to 17.26 38.76 37.35 to 40.18 7.60 6.97 to 8.30 38.38 36.96 to 39.81
Jordan 1990 1035 21.22 (3.59) 1.90 1.18 to 3.02 18.53 15.85 to 21.55 3.05 1.97 to 4.70 4.97 3.45 to 7.11 9.21 7.48 to 11.29
Jordan 1997 1074 22.17 (3.73) 2.98 2.11 to 4.20 8.55 6.88 to 10.59 1.60 0.94 to 2.71 2.92 2.05 to 4.14 15.63 13.37 to 18.19
Jordan 2007 898 23.02 (3.90) 1.83 0.77 to 4.30 12.20 9.05 to 16.26 5.89 3.66 to 9.35 5.23 3.55 to 7.64 16.98 13.21 to 21.55 12.29 9.25 to 16.16
Kazakhstan 1995 406 21.93 (3.62) 3.68 2.17 to 6.20 17.89 11.91 to 25.99 2.59 1.07 to 6.14 5.77 2.97 to 10.91 17.56 11.77 to 25.39
Kazakhstan 1999 395 21.99 (3.69) 4.48 2.69 to 7.38 12.66 8.15 to 19.15 2.56 0.97 to 6.54 3.86 1.53 to 9.42 17.49 13.32 to 22.63
Kenya 1998 867 19.92 (3.20) 3.95 2.71 to 5.71 38.01 33.54 to 42.69 5.98 3.97 to 8.90 14.11 11.53 to 17.14 18.73 14.95 to 23.21
Kenya 2003 1114 19.95 (3.43) 5.61 4.29 to 7.30 35.33 31.70 to 39.14 5.42 3.87 to 7.54 14.99 12.43 to 17.97 16.14 13.63 to 19.00
Kenya 2008 1059 19.91 (3.60) 4.75 3.34 to 6.71 35.46 30.78 to 40.43 5.24 3.67 to 7.41 14.39 11.36 to 18.06 13.55 10.69 to 17.02
Kyrgyz Republic 1997 388 20.97 (3.14) 5.05 3.22 to 7.83 32.43 24.30 to 41.77 2.02 0.73 to 5.49 6.77 3.51 to 12.64 19.38 14.01 to 26.20
Lesotho 2004 749 19.81 (3.24) 6.82 5.09 to 9.09 48.43 41.99 to 54.93 2.81 1.50 to 5.18 16.97 13.00 to 21.84 13.53 9.92 to 18.19 28.47 22.99 to 34.65
Liberia 2006 940 19.38 (3.52) 7.12 5.23 to 9.63 45.57 40.86 to 50.35 5.85 4.08 to 8.32 25.72 20.96 to 31.13 21.03 17.16 to 25.50
Madagascar 1997 915 19.22 (3.94) 10.61 8.51 to 13.14 65.46 60.10 to 70.45 7.12 5.03 to 10.00 34.37 29.41 to 39.70 29.95 25.50 to 34.81
Madagascar 2003 951 20.19 (4.40) 5.36 3.70 to 7.69 56.18 50.85 to 61.36 12.83 9.76 to 16.70 37.42 32.05 to 43.13 7.33 5.31 to 10.05 34.48 26.54 to 43.39
Madagascar 2008 1887 19.11 (3.82) 4.78 3.78 to 6.02 44.72 40.11 to 49.42 9.11 6.96 to 11.84 14.62 11.89 to 17.85
Malawi 1992 564 18.84 (2.98) 17.00 13.63 to 20.98 64.28 58.09 to 70.03 6.08 3.88 to 9.41 22.30 17.79 to 27.57 11.15 8.10 to 15.17
Malawi 2000 2121 18.95 (2.61) 13.71 12.13 to 15.46 62.66 59.57 to 65.66 4.79 3.64 to 6.27 22.42 19.99 to 25.05 16.49 14.48 to 18.71
Malawi 2004 1872 18.80 (2.53) 8.53 7.15 to 10.15 58.00 54.61 to 61.31 5.87 4.55 to 7.55 18.31 15.91 to 20.98 21.50 18.90 to 24.34 39.83 34.10 to 45.84
Mali 1995 1042 18.48 (3.32) 17.01 14.74 to 19.55 48.29 42.85 to 53.77 23.45 19.14 to 28.41 39.96 34.73 to 45.43 25.17 20.64 to 30.32
Mali 2001 1595 18.70 (3.44) 15.56 13.36 to 18.04 45.95 42.17 to 49.77 12.23 9.96 to 14.94 33.63 30.07 to 37.38 19.06 15.93 to 22.64 63.91 56.77 to 70.49
Mali 2006 1844 18.55 (3.43) 14.17 11.74 to 17.01 42.24 38.58 to 45.99 14.98 12.97 to 17.24 31.23 28.23 to 34.40 14.47 12.11 to 17.20 62.99 57.58 to 68.08
Moldova 2005 630 22.18 (3.56) 0.93 0.40 to 2.15 8.89 6.70 to 11.70 5.19 3.59 to 7.44 3.22 1.95 to 5.26 7.01 5.28 to 9.26 9.04 6.38 to 12.66
Morocco 1992 788 22.21 (4.38) 6.22 4.55 to 8.45 23.49 20.13 to 27.23 1.94 1.10 to 3.41 4.29 2.86 to 6.39 6.20 4.48 to 8.53
Morocco 2003 1276 22.57 (4.54) 3.96 3.00 to 5.21 19.72 17.10 to 22.64 8.67 7.00 to 10.70 8.32 6.80 to 10.15 7.30 5.72 to 9.26
Mozambique 1997 938 18.80 (3.27) 14.62 10.35 to 20.26 56.14 48.14 to 63.83 9.74 6.09 to 15.20 28.54 20.40 to 38.36 22.39 14.69 to 32.59
Mozambique 2003 1679 18.73 (3.26) 11.68 9.88 to 13.75 51.77 47.94 to 55.58 4.75 3.40 to 6.60 21.41 18.50 to 24.65 14.41 12.22 to 16.91
Namibia 1992 762 20.32 (3.71) 5.10 3.75 to 6.89 38.83 34.12 to 43.76 8.02 5.73 to 11.13 21.24 17.21 to 25.91 16.28 12.91 to 20.33
Namibia 2000 830 20.44 (3.83) 3.05 1.95 to 4.72 27.82 23.92 to 32.10 8.74 6.18 to 12.22 18.69 14.28 to 24.08 12.63 9.55 to 16.53
Namibia 2006 1123 20.76 (4.00) 3.31 2.44 to 4.50 28.69 24.81 to 32.90 5.96 4.41 to 8.02 17.92 14.58 to 21.84 16.00 12.96 to 19.59
Nicaragua 1997 1633 19.06 (3.64) 3.75 2.86 to 4.90 25.74 23.01 to 28.66 2.18 1.39 to 3.40 8.07 6.33 to 10.23 12.33 10.57 to 14.34
Nicaragua 2001 1663 19.26 (3.75) 2.43 1.78 to 3.30 20.84 18.42 to 23.48 1.59 0.88 to 2.85 5.03 3.84 to 6.56 12.33 10.48 to 14.45
Niger 1998 871 18.16 (3.15) 16.42 13.68 to 19.58 56.49 50.91 to 61.91 24.52 19.95 to 29.75 50.01 44.60 to 55.42 36.91 31.70 to 42.44
Niger 2006 922 18.64 (3.42) 9.45 7.42 to 11.96 60.64 55.35 to 65.69 9.47 6.85 to 12.95 45.40 40.09 to 50.81 18.74 14.93 to 23.26 59.43 53.08 to 65.49
Nigeria 1990 1023 19.80 (3.88) 7.65 5.64 to 10.30 55.63 51.25 to 59.92 13.60 8.01 to 22.17 38.01 32.01 to 44.40 10.97 8.23 to 14.47
Nigeria 2003 850 19.82 (3.89) 10.00 7.71 to 12.87 46.78 40.28 to 53.39 9.13 6.60 to 12.50 31.67 26.27 to 37.61 16.72 13.26 to 20.87
Nigeria 2008 3952 20.29 (4.24) 8.17 7.26 to 9.19 39.08 36.76 to 41.46 12.00 10.61 to 13.53 24.74 22.65 to 26.96 10.41 9.20 to 11.77
Pakistan 1990 874 20.81 (3.88) 9.97 7.64 to 12.90 53.38 47.78 to 58.89 11.52 7.41 to 17.49 33.03 27.96 to 38.54 7.11 4.90 to 10.21
Paraguay 1990 696 21.07 (4.21) 3.09 2.02 to 4.69 12.87 10.24 to 16.06 0.34 0.07 to 1.55 1.83 0.98 to 3.38 4.93 3.27 to 7.35
Peru 1991 1747 21.13 (4.22) 2.50 1.87 to 3.35 30.63 27.83 to 33.57 1.21 0.73 to 1.99 6.08 4.88 to 7.56 7.93 6.57 to 9.55
Peru 1996 3505 20.96 (4.15) 3.05 2.45 to 3.80 22.42 20.35 to 24.65 0.79 0.51 to 1.22 3.17 2.59 to 3.88 15.06 13.51 to 16.75
Peru 2000 3151 21.02 (4.33) 2.21 1.70 to 2.87 24.09 21.85 to 26.48 0.68 0.41 to 1.13 3.20 2.50 to 4.08 13.78 12.30 to 15.41 24.96 20.76 to 29.70
Peru 2003 2856 21.14 (4.44) 1.57 1.11 to 2.24 20.19 17.77 to 22.84 0.71 0.35 to 1.43 2.24 1.70 to 2.94 13.72 11.85 to 15.82 17.32 15.22 to 19.64
Rwanda 1992 742 21.54 (3.57) 10.06 8.07 to 12.48 58.42 53.98 to 62.73 2.91 1.75 to 4.82 19.17 15.79 to 23.07 15.52 12.61 to 18.96
Rwanda 2000 1209 21.34 (3.32) 10.62 8.96 to 12.54 52.92 49.11 to 56.70 5.24 3.73 to 7.30 17.46 14.78 to 20.52 15.93 13.40 to 18.84
Rwanda 2005 979 21.54 (3.29) 8.06 6.31 to 10.25 54.14 49.11 to 59.09 5.69 3.72 to 8.59 21.00 17.07 to 25.56 16.34 12.97 to 20.38 35.70 30.54 to 41.20
Senegal 2005 1260 20.01 (3.91) 7.09 5.61 to 8.93 20.13 15.29 to 26.04 7.46 5.05 to 10.88 13.98 10.29 to 18.71 21.26 16.65 to 26.74 61.98 55.64 to 67.94
Sierra Leone 2008 663 19.85 (4.03) 8.06 6.08 to 10.61 38.25 31.56 to 45.41 11.82 8.30 to 16.57 22.17 16.99 to 28.39 7.80 5.15 to 11.64 46.22 39.35 to 53.23
Swaziland 2006 620 19.48 (3.35) 7.95 5.95 to 10.55 28.69 24.65 to 33.10 1.54 0.72 to 3.29 3.87 2.40 to 6.16 17.15 13.71 to 21.23 21.93 18.07 to 26.34
Tanzania 1996 1058 19.31 (2.81) 9.38 7.62 to 11.50 56.50 52.22 to 60.69 8.52 6.43 to 11.20 26.25 23.01 to 29.77 13.45 11.13 to 16.17
Tanzania 1999 48 18.50 (2.84) 9.86 3.92 to 22.69 57.16 33.20 to 78.17 6.31 1.43 to 23.83 26.88 13.03 to 47.41 9.32 3.45 to 22.82
Tanzania 2004 1405 19.58 (3.26) 7.40 5.98 to 9.12 50.22 45.93 to 54.51 3.24 2.22 to 4.69 18.11 15.72 to 20.77 11.54 9.57 to 13.85 43.42 39.87 to 47.05
Togo 1998 801 20.30 (3.60) 8.27 6.47 to 10.53 34.67 29.09 to 40.70 12.53 9.28 to 16.70 25.71 21.19 to 30.81 30.18 25.94 to 34.79
Turkey 1993 949 21.16 (3.44) 4.73 3.47 to 6.42 17.98 15.20 to 21.15 1.76 1.00 to 3.09 6.15 4.49 to 8.37 14.42 12.09 to 17.12
Turkey 1998 929 21.59 (3.89) 3.06 2.05 to 4.55 18.36 15.46 to 21.67 1.62 0.88 to 2.99 5.70 4.12 to 7.85 27.06 23.87 to 30.51
Uganda 1995 1067 18.71 (2.98) 11.14 9.18 to 13.47 52.06 46.60 to 57.47 5.41 3.49 to 8.29 23.09 19.11 to 27.61 25.44 22.03 to 29.17
Uganda 2000 1035 18.81 (2.98) 10.56 8.68 to 12.78 49.28 45.02 to 53.56 3.10 1.94 to 4.93 14.86 11.93 to 18.34 16.99 13.93 to 20.57 41.11 36.08 to 46.33
Uganda 2006 711 19.26 (2.82) 7.63 5.55 to 10.39 42.30 36.02 to 48.83 6.65 3.81 to 11.35 15.90 11.62 to 21.39 26.83 21.31 to 33.17 41.20 34.42 to 48.33
Uzbekistan 1996 559 20.89 (2.71) 3.80 2.51 to 5.71 35.89 29.30 to 43.06 7.84 4.63 to 13.00 7.63 4.98 to 11.53 6.73 4.11 to 10.84
Zambia 1996 1188 18.80 (2.81) 13.46 11.48 to 15.72 57.98 54.05 to 61.81 4.49 3.18 to 6.29 21.31 18.40 to 24.55 24.12 21.17 to 27.34
Zambia 2001 1161 18.59 (2.68) 10.47 8.82 to 12.38 58.17 54.17 to 62.06 5.27 3.70 to 7.44 22.43 19.83 to 25.27 23.77 20.83 to 26.98
Zambia 2007 972 19.21 (3.12) 7.44 5.85 to 9.42 51.39 47.22 to 55.54 4.36 3.03 to 6.24 15.44 12.74 to 18.59 15.66 12.98 to 18.78
Zimbabwe 1994 719 19.53 (3.01) 5.81 4.22 to 7.95 31.46 25.99 to 37.50 7.39 4.77 to 11.27 14.70 10.79 to 19.72 25.59 20.64 to 31.26
Zimbabwe 2005 1261 19.87 (3.19) 5.49 4.08 to 7.35 33.26 30.00 to 36.69 6.32 4.77 to 8.33 12.57 10.49 to 14.98 13.65 11.40 to 16.26 29.68 25.99 to 33.65
Total 2000 176 583 20.18 (3.87) 6.49 6.35 to 6.64 36.20 35.81 to 36.60 7.53 7.32 to 7.74 19.78 19.43 to 20.13 13.64 13.40 to 13.87 32.60 31.87 to 33.34

In the infant mortality model (n=176 583 children), 23.9% of the women are between the ages of 15 and 17 at their first birth and 35.2% are between the ages of 18 and 20 (table 2). The reference group in the regression analysis is children whose mothers were 27–29 years old at their first birth. This group represents 4.3% of the population with 7648 children. Children of multiple births are rare (0.8%), most women (92.9%) have partners, 60.1% of the children are born in rural areas, 43.6% have piped water to the house (the remainder have to leave the house to collect water) and 30.9% of the children have a flush toilet at the house. Distributions of covariates are similar across the different outcome models (table 2).

Table 2.

Weighted frequency and distribution of first-born children within 5 years of the survey aged 12–60 months across age of mother at birth and other covariates

Infant mortality
Stunting
Underweight Wasting
Diarrhoea
Moderate anaemia
n=176 583
n=119 018
n=122 680
n=120 246
n=135 121
n=31 520
Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction
Age band in years of the mother at first birth
 12–14 4497 0.026 2301 0.020 2443 0.020 2379 0.020 2851 0.021 514 0.016
 15–17 42 233 0.239 25 882 0.219 26 839 0.220 26 335 0.220 30 011 0.222 6531 0.203
 18–20 62 091 0.352 41 492 0.351 42 868 0.352 42 054 0.352 47 425 0.351 11 753 0.366
 21–23 37 757 0.214 26 427 0.224 27 127 0.223 26 594 0.223 29 927 0.222 7563 0.236
 24–26 17 383 0.099 12 669 0.107 12 936 0.106 12 690 0.106 14 258 0.106 3355 0.105
 27–29 7648 0.043 5722 0.048 5883 0.048 5771 0.048 6480 0.048 1481 0.046
 30–32 3377 0.019 2566 0.022 2616 0.022 2547 0.021 2884 0.021 650 0.020
 33–35 1399 0.008 1075 0.009 1085 0.009 1075 0.009 1203 0.009 249 0.008
Sex of child
 Male 90 302 0.512 59 709 0.505 61 867 0.508 60 577 0.507 68 501 0.507 16 438 0.512
 Female 86 083 0.488 58 424 0.495 59 929 0.492 58 867 0.493 66 539 0.493 15 658 0.488
Type of birth
 Singleton 174 947 0.992 117 235 0.992 120 853 0.992 118 515 0.992 134 004 0.992 31 850 0.992
 Twin 1438 0.008 898 0.008 944 0.008 930 0.008 1036 0.008 247 0.008
Age of child in months
 48–60 44 542 0.253 24 472 0.207 24 780 0.203 24 353 0.204 27 013 0.200 7552 0.235
 36–47 42 793 0.243 26 908 0.228 27 694 0.227 27 210 0.228 31 330 0.232 7867 0.245
 24–35 43 082 0.244 31 485 0.267 32 603 0.268 31 950 0.267 36 595 0.271 7961 0.248
 12–23 45 968 0.261 35 268 0.299 36 718 0.301 35 932 0.301 40 101 0.297 8717 0.272
Educational level of the mother at time of interview
 Secondary or higher 36 152 0.205 27 729 0.235 28 308 0.232 27 757 0.232 31 177 0.231 6562 0.204
 Completed primary 57 645 0.327 40 543 0.343 41 341 0.339 40 673 0.341 45 720 0.339 12 739 0.397
 No education or incomplete primary 82 589 0.468 49 862 0.422 52 147 0.428 51 015 0.427 58 142 0.431 12 796 0.399
Mother has a partner
 Yes 163 858 0.929 109 350 0.926 112 890 0.927 110 666 0.927 125 468 0.929 30 192 0.941
 No 12 527 0.071 8784 0.074 8906 0.073 8779 0.074 9572 0.071 1904 0.059
Educational level of the mother's partner at the time of interview
 Completed secondary or higher 54 943 0.311 39 434 0.334 40 422 0.332 39 640 0.332 44 409 0.329 8891 0.277
 Completed primary 56 655 0.321 38 884 0.329 39 920 0.328 39 216 0.328 44 217 0.327 12 180 0.379
 No education or incomplete primary 64 787 0.367 39 815 0.337 41 455 0.340 40 589 0.340 46 414 0.344 11 025 0.344
Age band in years of the mother's partner at the mother's first birth
 12–17 2104 0.012 1224 0.010 1236 0.010 1211 0.010 1409 0.010 373 0.012
 18–23 40 271 0.228 27 180 0.230 28 018 0.230 27 483 0.230 30 594 0.227 9132 0.285
 24–29 101 722 0.577 66 806 0.566 68 828 0.565 67 569 0.566 77 555 0.574 15 792 0.492
 30–35 22 072 0.125 15 954 0.135 16 483 0.135 16 125 0.135 17 661 0.131 4797 0.149
 36–41 6768 0.038 4685 0.040 4846 0.040 4724 0.040 5266 0.039 1342 0.042
 42–59 3448 0.020 2284 0.019 2385 0.020 2332 0.020 2555 0.019 660 0.021
Wealth quintile of the child's household
 Richest 36 825 0.209 24 886 0.211 25 377 0.208 24 876 0.208 28 741 0.213 6550 0.204
 Rich 37 749 0.214 25 955 0.220 26 597 0.218 26 150 0.219 29 413 0.218 6961 0.217
 Middle 36 203 0.205 24 554 0.208 25 319 0.208 24 853 0.208 27 932 0.207 6795 0.212
 Poorer 34 324 0.195 22 705 0.192 23 517 0.193 23 053 0.193 25 834 0.191 6138 0.191
 Poorest 31 285 0.177 20 035 0.170 20 986 0.172 20 512 0.172 23 120 0.171 5653 0.176
Residence of the child's household at the time of interview
 Urban 70 395 0.399 50 428 0.427 51 491 0.423 50 597 0.424 57 358 0.425 12 301 0.383
 Rural 105 990 0.601 67 706 0.573 70 305 0.577 68 848 0.576 77 682 0.575 19 796 0.617
Water piped to child's house
 Piped to house 76 844 0.436 55 481 0.470 56 699 0.466 55 714 0.466 62 499 0.463 14 306 0.446
 Water not piped to house 99 542 0.564 62 653 0.530 65 097 0.534 63 731 0.534 72 542 0.537 17 790 0.554
Flush toilet at child's house
 Flush toilet at house 54 418 0.309 41 542 0.352 42 402 0.348 41 686 0.349 46 955 0.348 10 511 0.327
 No flush toilet at house 121 968 0.691 76 592 0.648 79 394 0.652 77 759 0.651 88 085 0.652 21 586 0.673
Child measles vaccination
 Cluster weighted mean 0.234 0.204 0.208 0.208 0.214 0.211

In figure 1 we plot the prevalence of the child health outcome against the age of the mother at first birth. The weighted fraction of child health outcomes by age is an extension of the statistics reported in table 2 of child health outcomes by age band. We see that, in general, the prevalence of poor child health outcomes declines with the mother's age to about age 27. The decline in poor child health outcomes with maternal age is particularly obvious for stunting, anaemia and underweight, but is also evident for diarrhoea, infant mortality and wasting.

Figure 1.

Figure 1

Child health indicator weighted prevalence by age of the mother at first birth.

Older women are more likely to have multiple births, although the event is rare across all age groups. Young mothers are less likely to have a partner: 8.6% of 15–17-year-old mothers do not have a partner compared to 5.8% of women in the 27–29-year-old category (table 3). Young mothers have lower education than older mothers: 64.6% of mothers aged 15–17 had incomplete primary or no schooling, whereas 23.1% of women who had their first birth between the ages of 27 and 29 had only incomplete primary or no schooling (table 3). Older mothers tend to be in a higher wealth quintile: 42.9% of women who had their first birth between the ages of 27 and 29 are in the richest quintile, while 11.7% of mothers age 15–17 are in the richest quintile (table 3). Overall, 71.2% of mothers who had their first birth between the ages of 15 and 17 live in rural areas, while 35% of women who had their first birth between the ages of 27 and 29 live in rural areas (table 3). Delaying first birth is more likely in urban areas. Women who have their first birth later are also more likely to live in conditions that are more sanitary: 57.3% of women who had their first birth between the ages of 27 and 29 have a flush toilet at the house compared to 16.4% of 15–17-year-old first time mothers (table 3).

Table 3.

Weighted frequency and distribution covariates across age of the mother at first birth

Age band in years 12–14
15–17
18–20
21–23
24–26
27–29
30–32
33–35
n=4322
n=41 384
n=61 491
n=38 300
n=18 211
n=7939
n=3493
n=1443
Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction Population Weighted fraction
Sex of child
 Male 2323 0.517 21 627 0.512 31 995 0.515 19 017 0.504 8941 0.514 3964 0.518 1731 0.513 705 0.504
 Female 2173 0.483 20 607 0.488 30 096 0.485 18 741 0.496 8443 0.486 3685 0.482 1646 0.487 694 0.496
Type of birth
 Singleton 4477 0.996 42 003 0.995 61 701 0.994 37 376 0.990 17 173 0.988 7532 0.985 3317 0.982 1369 0.979
 Twin 19 0.004 230 0.005 390 0.006 382 0.010 211 0.012 116 0.015 60 0.018 30 0.021
Age of child in months
 48–60 1380 0.307 11 154 0.264 15 402 0.248 9272 0.246 4269 0.246 1841 0.241 890 0.263 335 0.240
 36–47 1260 0.280 10 537 0.249 14 491 0.233 9378 0.248 4176 0.240 1822 0.238 822 0.243 307 0.219
 24–35 995 0.221 10 125 0.240 15 252 0.246 9419 0.249 4191 0.241 1885 0.246 839 0.248 376 0.269
 12–23 862 0.192 10 418 0.247 16 946 0.273 9687 0.257 4748 0.273 2100 0.275 827 0.245 381 0.272
Educational level of the mother at time of interview
 Secondary or higher 30 0.007 1518 0.036 9263 0.149 11 213 0.297 7607 0.438 3979 0.520 1836 0.544 705 0.504
 Completed primary 957 0.213 13 415 0.318 22 837 0.368 12 459 0.330 4961 0.285 1899 0.248 781 0.231 336 0.241
 No education or incomplete primary 3509 0.780 27 300 0.646 29 991 0.483 14 085 0.373 4816 0.277 1770 0.231 760 0.225 357 0.256
Mother has a partner
 Yes 4101 0.912 38 606 0.914 57 623 0.928 35 469 0.939 16 378 0.942 7208 0.942 3181 0.942 1291 0.923
 No 395 0.088 3627 0.086 4468 0.072 2288 0.061 1006 0.058 440 0.058 196 0.058 108 0.077
Educational level of the mother's partner at the time of interview
 Completed secondary or higher 669 0.149 8265 0.196 17 087 0.275 14 040 0.372 8148 0.469 4113 0.538 1876 0.556 746 0.533
 Completed primary 1107 0.246 12 977 0.307 21 683 0.349 12 533 0.332 5193 0.299 2031 0.266 802 0.238 328 0.235
 No education or incomplete primary 2721 0.605 20 992 0.497 23 321 0.376 11 184 0.296 4042 0.233 1504 0.197 699 0.207 325 0.232
Age band in years of the mother's partner at the mother's first birth
 12–17 313 0.070 1250 0.030 407 0.007 109 0.003 20 0.001 4 0.001 1 0.000 1 0.000
 18–23 1587 0.353 14 655 0.347 17 407 0.280 5426 0.144 898 0.052 227 0.030 55 0.016 17 0.012
 24–29 2256 0.502 22 157 0.525 36 519 0.588 24 543 0.650 10 869 0.625 3671 0.480 1220 0.361 487 0.348
 30–35 214 0.048 2756 0.065 5480 0.088 5634 0.149 3981 0.229 2491 0.326 1203 0.356 313 0.223
 36–41 83 0.019 896 0.021 1467 0.024 1319 0.035 1155 0.066 848 0.111 631 0.187 371 0.265
 42–59 44 0.010 520 0.012 812 0.013 727 0.019 461 0.027 407 0.053 267 0.079 211 0.151
Wealth quintile of the child's household
 Richest 366 0.081 4937 0.117 10 572 0.170 9490 0.251 6196 0.356 3283 0.429 1423 0.421 557 0.398
 Rich 710 0.158 7659 0.181 13 466 0.217 9088 0.241 3972 0.228 1700 0.222 815 0.241 340 0.243
 Middle 950 0.211 9159 0.217 13 772 0.222 7453 0.197 2950 0.170 1185 0.155 517 0.153 216 0.154
 Poorer 1194 0.265 10 329 0.245 12 770 0.206 6330 0.168 2354 0.135 838 0.110 350 0.103 160 0.114
 Poorest 1277 0.284 10 148 0.240 11 511 0.185 5397 0.143 1911 0.110 642 0.084 273 0.081 126 0.090
Residence of the child's household at the time of interview
 Urban 1033 0.230 12 159 0.288 22 251 0.358 16 999 0.450 9721 0.559 4969 0.650 2315 0.686 949 0.678
 Rural 3463 0.770 30 074 0.712 39 840 0.642 20 759 0.550 7663 0.441 2679 0.350 1062 0.314 450 0.322
Water piped to child's house
 Piped to house 1082 0.241 13 530 0.320 25 731 0.414 18 816 0.498 9906 0.570 4736 0.619 2149 0.636 896 0.640
 Water not piped to house 3415 0.759 28 704 0.680 36 360 0.586 18 942 0.502 7478 0.430 2912 0.381 1228 0.364 503 0.360
Flush toilet at child's house
 Flush toilet at house 434 0.097 6908 0.164 16 700 0.269 14 506 0.384 8551 0.492 4380 0.573 2080 0.616 859 0.614
 No flush toilet at house 4062 0.903 35 325 0.836 45 390 0.731 23 251 0.616 8832 0.508 3269 0.427 1297 0.384 540 0.386
Child measles vaccination
 Cluster weighted mean 0.359 0.298 0.238 0.202 0.166 0.145 0.125 0.139

Women who delay their first birth are more educated, more likely to have a partner, are richer, more likely to live in an urban area, and more likely to live in better sanitary conditions. Young mothers tend to have lower educational and socioeconomic characteristics. In the following analysis, we present both unadjusted results and results that control for these covariates (table 3).

Unadjusted and adjusted models

The unadjusted pooled results indicate that the risk of infant mortality is lowest for women who have their first birth between the ages of 27 and 29 (online supplementary appendix table A3). The RR ratio declines as age increases between the ages of 12 and 26, and is lowest for 27–29-year-old mothers (table A3). The RR ratio then increases for women who have their first birth at 33–35 years of age (table A3). This same U-shape is exhibited in many of the country-specific unadjusted regressions. Benin, Bolivia, India, Senegal and Tanzania are examples where child survival is maximised if the first birth is delayed to the ages of 27–29, and most countries (38/55) follow this pattern (table A3).

Age of the mother at first birth is a risk factor for infant mortality and adverse child health outcomes in adjusted analysis controlling for maternal, paternal, and household and social characteristics (table 4). The RR ratios of each age group (relative to 27–29 year olds who are the reference group) and 95% CIs are plotted in figure 2. Child health outcomes improve with increasing age of the mother at first birth through to age 27–29 even after controlling for maternal, paternal, household and social factor covariates (table 4, figure 2).

Table 4.

Adjusted RR (95% CI) of infant mortality and child health outcome by age of the mother at first birth

Infant mortality Stunting Underweight Wasting Diarrhoea Moderate anaemia
Age band in years of the mother at first birth
 27–29 (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 12–14 1.703 (1.478 to 1.962) 1.507 (1.416 to 1.603) 1.351 (1.236 to 1.477) 1.027 (0.870 to 1.211) 1.365 (1.216 to 1.533) 1.315 (1.131 to 1.528)
 15–17 1.307 (1.160 to 1.474) 1.341 (1.274 to 1.412) 1.218 (1.131 to 1.313) 1.040 (0.923 to 1.170) 1.326 (1.224 to 1.436) 1.357 (1.222 to 1.507)
 18–20 1.083 (0.963 to 1.219) 1.272 (1.210 to 1.338) 1.122 (1.043 to 1.207) 1.007 (0.899 to 1.129) 1.244 (1.151 to 1.343) 1.327 (1.200 to 1.468)
 21–23 1.018 (0.903 to 1.148) 1.191 (1.132 to 1.254) 1.052 (0.976 to 1.132) 1.018 (0.908 to 1.141) 1.227 (1.135 to 1.326) 1.349 (1.219 to 1.493)
 24–26 1.079 (0.948 to 1.228) 1.087 (1.028 to 1.148) 0.989 (0.912 to 1.071) 1.004 (0.889 to 1.135) 1.108 (1.019 to 1.203) 1.239 (1.114 to 1.378)
 30–32 1.191 (0.981 to 1.445) 0.925 (0.845 to 1.013) 0.824 (0.717 to 0.947) 0.915 (0.749 to 1.119) 0.979 (0.860 to 1.115) 1.117 (0.947 to 1.317)
 33–35 1.340 (1.041 to 1.725) 1.025 (0.908 to 1.156) 0.872 (0.715 to 1.062) 0.976 (0.733 to 1.299) 0.831 (0.687 to 1.006) 1.079 (0.854 to 1.362)
Sex of child
 Male (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Female 0.787 (0.759 to 0.815) 0.900 (0.888 to 0.913) 0.915 (0.895 to 0.935) 0.854 (0.821 to 0.889) 0.927 (0.903 to 0.951) 0.956 (0.927 to 0.985)
Type of birth
 Singleton (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Twin 4.998 (4.609 to 5.421) 1.302 (1.207 to 1.404) 1.627 (1.459 to 1.814) 1.264 (1.018 to 1.570) 0.918 (0.782 to 1.077) 1.135 (0.963 to 1.337)
Age of child in months
 48–59 (reference) 1.00 1.00 1.00 1.00 1.00
 36–47 1.146 (1.119 to 1.174) 1.023 (0.986 to 1.062) 0.986 (0.916 to 1.060) 1.392 (1.311 to 1.477) 1.219 (1.147 to 1.296)
 24–35 1.246 (1.217 to 1.275) 1.123 (1.083 to 1.164) 1.145 (1.066 to 1.229) 2.446 (2.316 to 2.582) 1.609 (1.513 to 1.711)
 12–23 1.169 (1.141 to 1.198) 1.114 (1.073 to 1.156) 1.572 (1.466 to 1.686) 3.818 (3.625 to 4.021) 2.240 (2.102 to 2.386)
Educational level of the mother at time of interview
 Secondary or higher (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Completed primary 1.266 (1.160 to 1.382) 1.286 (1.243 to 1.329) 1.282 (1.214 to 1.354) 1.022 (0.945 to 1.105) 1.143 (1.092 to 1.196) 1.079 (1.009 to 1.154)
 No education or incomplete primary 1.626 (1.480 to 1.786) 1.482 (1.429 to 1.536) 1.586 (1.495 to 1.681) 1.243 (1.141 to 1.355) 1.192 (1.131 to 1.256) 1.159 (1.075 to 1.248)
Mother has a partner
 Yes (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 No 0.977 (0.881 to 1.084) 1.148 (1.106 to 1.193) 1.237 (1.158 to 1.322) 1.232 (1.101 to 1.379) 1.105 (1.043 to 1.170) 1.110 (1.022 to 1.206)
Educational level of the mother's partner at the time of interview
 Higher (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Completed primary 1.099 (1.027 to 1.176) 1.068 (1.040 to 1.097) 1.097 (1.052 to 1.144) 1.037 (0.969 to 1.109) 1.059 (1.015 to 1.104) 1.053 (0.993 to 1.117)
 No education or incomplete primary 1.232 (1.147 to 1.324) 1.131 (1.099 to 1.163) 1.233 (1.180 to 1.288) 1.151 (1.070 to 1.238) 1.068 (1.019 to 1.120) 1.098 (1.029 to 1.172)
Age band in years of the mother's partner at the mother's first birth
 24–29 (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 12–17 1.410 (1.237 to 1.606) 1.148 (1.081 to 1.219) 1.125 (1.017 to 1.245) 1.008 (0.801 to 1.269) 1.049 (0.932 to 1.181) 1.090 (0.937 to 1.269)
 18–23 1.077 (1.026 to 1.130) 1.054 (1.035 to 1.073) 1.026 (0.997 to 1.056) 0.979 (0.927 to 1.034) 1.032 (0.997 to 1.068) 1.050 (1.010 to 1.092)
 30–35 0.942 (0.884 to 1.005) 0.964 (0.939 to 0.990) 0.953 (0.918 to 0.990) 0.941 (0.882 to 1.004) 0.958 (0.915 to 1.002) 0.997 (0.949 to 1.046)
 36–41 0.996 (0.904 to 1.097) 0.986 (0.945 to 1.028) 0.932 (0.875 to 0.992) 0.929 (0.835 to 1.034) 1.032 (0.960 to 1.108) 1.069 (0.994 to 1.149)
 42–59 1.046 (0.932 to 1.173) 1.036 (0.983 to 1.093) 1.030 (0.954 to 1.111) 0.977 (0.855 to 1.118) 1.101 (1.004 to 1.207) 0.962 (0.874 to 1.060)
Wealth quintile of the child's household
 Richest (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Rich 1.138 (1.063 to 1.219) 1.182 (1.148 to 1.216) 1.272 (1.216 to 1.331) 1.110 (1.032 to 1.194) 1.171 (1.117 to 1.227) 1.157 (1.093 to 1.224)
 Middle 1.223 (1.136 to 1.316) 1.257 (1.218 to 1.297) 1.416 (1.348 to 1.486) 1.276 (1.176 to 1.384) 1.209 (1.149 to 1.272) 1.246 (1.170 to 1.326)
 Poorer 1.268 (1.173 to 1.371) 1.332 (1.289 to 1.376) 1.524 (1.448 to 1.604) 1.344 (1.233 to 1.466) 1.244 (1.177 to 1.314) 1.287 (1.203 to 1.378)
 Poorest 1.289 (1.187 to 1.399) 1.445 (1.397 to 1.496) 1.671 (1.585 to 1.762) 1.458 (1.331 to 1.598) 1.289 (1.213 to 1.369) 1.338 (1.245 to 1.438)
Residence of the child's household at the time of interview
 Urban (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Rural 1.043 (0.991 to 1.099) 1.082 (1.059 to 1.106) 1.029 (0.996 to 1.064) 0.943 (0.891 to 0.998) 0.939 (0.905 to 0.974) 0.981 (0.937 to 1.026)
Water piped to the child's house
 Piped to house (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Water not piped to house 1.100 (1.047 to 1.156) 0.956 (0.938 to 0.975) 1.031 (1.000 to 1.063) 1.034 (0.980 to 1.092) 1.002 (0.969 to 1.037) 0.988 (0.950 to 1.029)
Flush toilet at child's house
 Flush toilet at house (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 No flush toilet at house 1.137 (1.062 to 1.217) 1.224 (1.191 to 1.259) 1.137 (1.091 to 1.184) 1.045 (0.978 to 1.116) 1.041 (0.997 to 1.087) 1.035 (0.982 to 1.090)
Child measles vaccination
 Vaccinated (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Not vaccinated 1.108 (1.038 to 1.183) 1.070 (1.042 to 1.100) 1.164 (1.120 to 1.209) 1.195 (1.113 to 1.284) 1.072 (1.020 to 1.127) 1.109 (1.051 to 1.170)
Observations 176 583 119 018 122 680 120 246 135 121 31 520

Figure 2.

Figure 2

Plot of adjusted RR ratios and 95% CIs as per the results in table 4.

Maternal and paternal age have different effects on child health outcomes (table 4). In the cases of infant mortality, underweight, wasting and anaemia, maternal and paternal age have similar effect sizes, indicating the role of social mechanisms (table 4). In the case of stunting and diarrhoea, while having a very young father increases the RR of poor child health outcomes, the effect is significantly smaller than that of the mother's age, strengthening the case that the effect has a biological component for these two child health outcomes (table 4). There may be concern that the effect of the age of the mother on child health outcomes may be changing over time. Although the year of birth is controlled for, this only controls for year-specific events and not for an interaction between the age of the mother and the year of birth. To explore this possibility, online supplementary table A4 is the same model as that in table 4 but the sample is restricted to surveys between 2000 and 2005. Comparison of results in table A4 and table 4 shows that the effect of the age of the mother on child health is similar across the two samples. This comparison suggests that the effect of age on child health outcomes is not changing over the study period.

The effect of the young age of the mother at first birth on poor child health outcomes reflects a combination of biological and social factors. If the effect were solely social, then we would expect no age gradient for women grouped into high and low socioeconomic status (SES). That is, if all women are of the same SES, then any age gradient reflects the biological mechanism. This hypothesis is explored by stratifying low and high SES. For the high SES group, we select children who have mothers who have completed at least primary school, in households that are in one of the top two wealth quintiles and who live in an urban area (table 5). In contrast, we select the children with mothers who have not completed primary school, are in households that are in the bottom two wealth quintiles and live in a rural area into the low SES group. At the top of table 5 we report the absolute prevalence of the child health outcome by this stratification. In the high SES group, 3.0% of the infants die, while in the low SES households, 10.4% of the infants die (table 5). Stunting, underweight, wasting, diarrhoea and anaemia are all much more prevalent in low SES households than in high SES households (table 5). However, when considering the RR ratios across the age groups for the outcomes of stunting, underweight and diarrhoea, the RR of a poor health outcome for young mothers is higher in the high SES households than in the low SES households (table 5). The difference in the RR of age on these child health outcomes across the two groups indicates that early childbearing is not just a risk factor in lower socioeconomic groups, and that the biological mechanism of young mothers plays a role in determining child health outcomes.

Table 5.

Adjusted RR (95% CI) ratios in high SES and low SES households

Infant mortality
Stunting
Underweight
Wasting
Diarrhoea
Moderate anaemia
High SES Low SES High SES Low SES High SES Low SES High SES Low SES High SES Low SES High SES Low SES
Prevalence (weighted %) 2.99 10.4 18.6 54.2 7.92 33.6 4.46 11.7 11 15.4 21.4 42.2
Age band in years of the mother at first birth
 27–29 (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 12–14 1.757 (1.015 to 3.040) 1.747 (1.338 to 2.283) 1.899 (1.473 to 2.449) 1.244 (1.118 to 1.385) 1.750 (1.169 to 2.619) 1.167 (1.004 to 1.355) 0.875 (0.358 to 2.140) 1.062 (0.776 to 1.452) 1.792 (1.229 to 2.612) 1.342 (1.057 to 1.702) 0.388 (0.108 to 1.400) 1.438 (1.047 to 1.974)
 15–17 1.297 (0.984 to 1.710) 1.315 (1.029 to 1.681) 1.474 (1.313 to 1.655) 1.143 (1.040 to 1.257) 1.377 (1.147 to 1.654) 1.066 (0.935 to 1.215) 1.234 (0.950 to 1.602) 0.968 (0.744 to 1.258) 1.377 (1.172 to 1.618) 1.181 (0.964 to 1.446) 1.234 (1.001 to 1.521) 1.504 (1.144 to 1.978)
 18–20 1.087 (0.846 to 1.398) 1.104 (0.865 to 1.409) 1.308 (1.179 to 1.452) 1.085 (0.987 to 1.192) 1.260 (1.071 to 1.482) 0.984 (0.863 to 1.121) 1.181 (0.951 to 1.467) 0.964 (0.743 to 1.250) 1.395 (1.214 to 1.603) 1.107 (0.905 to 1.354) 1.154 (0.964 to 1.381) 1.433 (1.092 to 1.880)
 21–23 1.020 (0.800 to 1.300) 1.016 (0.790 to 1.307) 1.221 (1.102 to 1.352) 1.065 (0.968 to 1.171) 1.156 (0.985 to 1.357) 0.948 (0.830 to 1.084) 1.198 (0.976 to 1.472) 0.990 (0.759 to 1.292) 1.318 (1.152 to 1.508) 1.126 (0.917 to 1.382) 1.203 (1.008 to 1.437) 1.500 (1.141 to 1.972)
 24–26 1.015 (0.783 to 1.315) 1.116 (0.848 to 1.470) 1.083 (0.972 to 1.208) 0.989 (0.890 to 1.100) 1.028 (0.871 to 1.215) 0.941 (0.811 to 1.091) 1.207 (0.979 to 1.489) 1.076 (0.811 to 1.428) 1.206 (1.048 to 1.388) 1.139 (0.911 to 1.425) 1.105 (0.925 to 1.320) 1.424 (1.066 to 1.901)
 30–32 1.647 (1.183 to 2.291) 0.710 (0.414 to 1.216) 0.918 (0.771 to 1.093) 0.911 (0.760 to 1.093) 0.875 (0.666 to 1.150) 0.827 (0.624 to 1.097) 0.971 (0.697 to 1.351) 0.832 (0.488 to 1.418) 0.940 (0.757 to 1.167) 1.111 (0.777 to 1.590) 1.151 (0.886 to 1.496) 1.270 (0.820 to 1.966)
 33–35 1.407 (0.846 to 2.341) 0.956 (0.525 to 1.740) 1.049 (0.822 to 1.338) 1.222 (1.013 to 1.473) 0.743 (0.471 to 1.170) 0.860 (0.594 to 1.245) 1.128 (0.713 to 1.785) 0.650 (0.287 to 1.473) 0.769 (0.555 to 1.065) 0.821 (0.488 to 1.379) 1.036 (0.686 to 1.565) 1.438 (0.826 to 2.502)
Sex of child
 Male (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 Female 0.700 (0.627 to 0.782) 0.829 (0.781 to 0.881) 0.850 (0.814 to 0.888) 0.929 (0.908 to 0.951) 0.911 (0.850 to 0.977) 0.921 (0.890 to 0.954) 0.886 (0.802 to 0.979) 0.843 (0.786 to 0.905) 0.913 (0.859 to 0.969) 0.959 (0.910 to 1.011) 0.942 (0.868 to 1.021) 0.963 (0.910 to 1.019)
Type of birth
 Singleton (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 Twin 5.439 (4.278 to 6.916) 4.557 (3.932 to 5.281) 1.212 (0.991 to 1.482) 1.271 (1.111 to 1.454) 1.704 (1.290 to 2.251) 1.448 (1.179 to 1.778) 1.365 (0.898 to 2.074) 1.392 (0.917 to 2.112) 0.768 (0.533 to 1.106) 1.015 (0.716 to 1.437) 1.061 (0.733 to 1.534) 1.183 (0.860 to 1.627)
Age of child in months
 Age 48–59 (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 36–47 1.239 (1.145 to 1.341) 1.118 (1.076 to 1.162) 1.037 (0.919 to 1.170) 1.037 (0.976 to 1.102) 0.877 (0.741 to 1.039) 0.994 (0.868 to 1.138) 1.410 (1.229 to 1.617) 1.453 (1.289 to 1.638) 1.258 (1.064 to 1.487) 1.219 (1.095 to 1.357)
 24–35 1.415 (1.310 to 1.528) 1.172 (1.129 to 1.216) 1.182 (1.049 to 1.331) 1.142 (1.077 to 1.211) 0.956 (0.806 to 1.133) 1.236 (1.086 to 1.408) 2.466 (2.174 to 2.796) 2.507 (2.246 to 2.799) 1.763 (1.493 to 2.081) 1.469 (1.319 to 1.637)
 12–23 1.392 (1.287 to 1.506) 1.081 (1.040 to 1.124) 1.107 (0.977 to 1.254) 1.151 (1.084 to 1.222) 1.156 (0.974 to 1.371) 1.853 (1.632 to 2.104) 3.891 (3.449 to 4.389) 3.720 (3.347 to 4.135) 2.585 (2.163 to 3.090) 1.927 (1.727 to 2.149)
Educational level of the mother at time of interview
 Secondary or higher (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Completed primary 1.220 (1.049 to 1.420) 1.266 (1.191 to 1.346) 1.208 (1.101 to 1.325) 1.103 (0.969 to 1.255) 1.177 (1.085 to 1.277) 1.099 (0.987 to 1.223)
Mother has a partner
 Omitted category: yes
 No 1.012 (0.811 to 1.263) 0.960 (0.739 to 1.246) 1.215 (1.108 to 1.332) 1.038 (0.949 to 1.135) 1.333 (1.127 to 1.577) 1.180 (1.012 to 1.377) 1.249 (0.985 to 1.583) 1.608 (1.179 to 2.193) 1.038 (0.926 to 1.163) 1.223 (1.030 to 1.451) 1.100 (0.930 to 1.301) 1.063 (0.814 to 1.388)
Educational level of the mother's partner at the time of interview
 Secondary or higher (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 Completed primary 1.046 (0.911 to 1.201) 1.100 (0.902 to 1.341) 1.115 (1.052 to 1.182) 0.997 (0.926 to 1.074) 1.137 (1.041 to 1.242) 1.056 (0.940 to 1.187) 0.910 (0.807 to 1.027) 1.266 (0.994 to 1.613) 1.071 (0.989 to 1.159) 0.989 (0.852 to 1.148) 1.087 (0.979 to 1.208) 0.987 (0.782 to 1.246)
 No education or incomplete primary 1.303 (1.059 to 1.602) 1.277 (1.059 to 1.540) 1.206 (1.109 to 1.312) 1.039 (0.968 to 1.116) 1.381 (1.218 to 1.566) 1.224 (1.094 to 1.370) 1.180 (0.981 to 1.420) 1.452 (1.149 to 1.834) 1.209 (1.069 to 1.368) 1.002 (0.869 to 1.156) 1.221 (1.043 to 1.428) 0.974 (0.777 to 1.222)
Age band in years of the mother's partner at the mother's first birth
 24–29 (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 12–17 1.284 (0.668 to 2.470) 1.528 (1.261 to 1.851) 1.010 (0.697 to 1.466) 1.087 (0.996 to 1.186) 1.106 (0.627 to 1.952) 1.085 (0.937 to 1.256) 0.551 (0.141 to 2.147) 0.959 (0.672 to 1.368) 1.206 (0.847 to 1.715) 1.091 (0.883 to 1.349) 1.124 (0.664 to 1.901) 1.005 (0.785 to 1.285)
 18–23 1.122 (0.948 to 1.327) 1.090 (1.008 to 1.178) 1.141 (1.070 to 1.217) 1.036 (1.006 to 1.068) 1.072 (0.970 to 1.186) 1.015 (0.970 to 1.063) 1.028 (0.872 to 1.211) 0.977 (0.889 to 1.073) 0.967 (0.881 to 1.061) 1.076 (1.006 to 1.149) 1.069 (0.954 to 1.198) 1.061 (0.989 to 1.138)
 30–35 0.907 (0.770 to 1.069) 0.970 (0.863 to 1.090) 0.937 (0.875 to 1.004) 0.964 (0.919 to 1.012) 0.917 (0.825 to 1.019) 0.960 (0.898 to 1.026) 1.012 (0.880 to 1.163) 0.878 (0.767 to 1.004) 0.911 (0.831 to 1.000) 0.990 (0.895 to 1.094) 0.892 (0.795 to 1.000) 1.122 (1.027 to 1.226)
 36–41 0.784 (0.587 to 1.048) 0.950 (0.797 to 1.132) 0.962 (0.852 to 1.086) 1.030 (0.963 to 1.101) 0.760 (0.614 to 0.940) 0.970 (0.880 to 1.069) 1.070 (0.842 to 1.360) 0.851 (0.701 to 1.034) 0.994 (0.851 to 1.160) 0.993 (0.855 to 1.152) 0.876 (0.715 to 1.074) 1.180 (1.044 to 1.334)
 42–59 0.698 (0.413 to 1.178) 1.100 (0.912 to 1.327) 1.106 (0.907 to 1.349) 1.054 (0.973 to 1.141) 1.119 (0.807 to 1.550) 0.960 (0.854 to 1.079) 1.388 (0.940 to 2.052) 0.885 (0.711 to 1.103) 0.949 (0.731 to 1.233) 1.078 (0.909 to 1.280) 0.910 (0.656 to 1.263) 1.012 (0.869 to 1.178)
Wealth quintile of the child's household
 Richest (reference) 1.00 1.00 1.00 1.00 1.00 1.00
 Rich 1.267 (1.111 to 1.445) 1.223 (1.161 to 1.290) 1.288 (1.187 to 1.398) 1.045 (0.926 to 1.180) 1.143 (1.065 to 1.226) 1.121 (1.023 to 1.228)
 Middle
 Poorer 0.996 (0.938 to 1.057) 0.936 (0.913 to 0.959) 0.923 (0.891 to 0.956) 0.937 (0.870 to 1.008) 0.957 (0.905 to 1.012) 0.977 (0.922 to 1.037)
 Poorest (reference) 1.00 1.00 1.00 1.00 1.00 1.00
Water piped to the child's house
 Piped to house (reference)
 Water not piped to house 1.066 (0.924 to 1.229) 1.138 (1.017 to 1.273) 0.936 (0.883 to 0.993) 0.964 (0.925 to 1.004) 1.001 (0.919 to 1.089) 1.066 (0.995 to 1.142) 0.991 (0.874 to 1.123) 1.163 (1.015 to 1.333) 0.966 (0.884 to 1.055) 1.065 (0.979 to 1.159) 0.976 (0.886 to 1.076) 1.028 (0.933 to 1.133)
Flush toilet at child's house
 Flush toilet at house (reference)
 No flush toilet at house 0.948 (0.818 to 1.098) 1.369 (1.075 to 1.745) 1.158 (1.089 to 1.232) 1.173 (1.064 to 1.294) 1.082 (0.988 to 1.185) 1.239 (1.037 to 1.481) 1.011 (0.879 to 1.164) 0.996 (0.753 to 1.318) 1.088 (0.994 to 1.191) 1.057 (0.889 to 1.257) 0.984 (0.872 to 1.110) 0.982 (0.797 to 1.209)
Child measles vaccination
 Not vaccinated 1.653 (1.309 to 2.088) 1.000 (0.905 to 1.106) 1.190 (1.072 to 1.320) 1.066 (1.022 to 1.111) 1.211 (1.037 to 1.414) 1.200 (1.130 to 1.275) 1.229 (0.969 to 1.559) 1.185 (1.050 to 1.337) 1.045 (0.907 to 1.204) 1.030 (0.940 to 1.129) 1.299 (1.101 to 1.531) 1.127 (1.035 to 1.228)
Observations 40 299 38 612 28 797 23 657 29 345 24 846 28 783 24 251 32 809 27 435 8027 6026

High SES includes children who are in households that are in the rich or richest wealth quintiles, have mothers with completed primary school or higher, and live in an urban area. Low SES includes children who are in households that are in the poor and poorest wealth quintiles, have mothers with incomplete primary or no education, and live in a rural area.

SES, socioeconomic status.

Sensitivity analysis

Recent work by Subramanian et al2 and Ozaltin et al3 indicates that maternal height is a significant predictor of infant mortality, anthropometric failure and anaemia in India. At the cost of a smaller sample (n=101 054), height is included as a control variable in the regression, in addition to the controls used in the adjusted regressions, to examine whether in the sub-set of countries for which the DHS have data on women's height, the age effect that we observe is confounded by maternal height. Household religion is also included as a control variable as in many low- to middle-income countries religion has a bearing on household decision-making that may include health seeking behaviour. Moreover, religion may influence the autonomy of women to make decisions over the timing of their first birth. Even after controlling for height and religion, the age of the mother at first birth remains a significant risk factor for infant mortality, anthropometric failure and child health outcomes (online supplementary table A5). When height, which is an additional biological covariate, and religion, which is an additional social covariate, are controlled for, the general relationship between the age of the mother at their first birth and child health outcomes persists (table A5).

Discussion

Principal findings

In this paper we show that, controlling for maternal, paternal and household and social factors, there is an improvement in child health outcomes as the age of the mother at first birth increases to age 27–29. This is a much higher age than has been previously reported, where teen pregnancy is emphasised as a risk factor. In the adjusted model, we show that there is an elevated risk of infant mortality in first-born children to mothers below the ages of 27–29, although the effect is only statistically significant for women below age 18. However, the lack of significance may be because cases of infant mortality in our sample are relatively rare, whereas we find that mothers below age 27–29 have elevated and statistically significant risks for stunting, diarrhoea and anaemia outcomes.

Our results indicate that children to mothers below age 27–29 are at higher risk of poor health outcomes. In our sample of low- to middle-income countries, only 7% of women delay their first birth until the age of 27 or older. The USA has seen a steady rise in the average age at first birth from 21 in 1970 to 25 in 2000.37 Age at first birth is increasing in some of our sample countries, but is still lagging behind the level seen in the USA. For example, in the 1993 Bangladesh DHS, the mean age for first births in the last 5 years was 18.2, but in 2007 had risen to 18.5. In Ghana, age for first births increased from a mean of 19.8 in 1988 to 21.2 in 2008. In Tanzania, mean age at first birth increased from 19.2 in 1991 to 19.6 in 2004. Bongaarts found that family planning programs can reduce the child mortality rate by delaying the age at first birth, preventing high parity births and improving birth spacing.38 The results in this paper indicate that delaying the age at first birth even for women in their early 20s reduces infant mortality and improves child health.

Overall, the risk of a poor health outcome dissipates by age 21, but the general trend of improvement continues through to age 27–29. Thus, while the early 20s present a lower risk of a poor child health outcome than a first birth to a teen mother, delaying to the late 20s means that the risk of a poor child health outcome is minimised. Moreover, we find evidence of a paternal age gradient, although it is weaker than the maternal age gradient. This indicates that social mechanisms play some role, but the biological maturity of the mother also helps determine child health outcomes. This finding was also supported by the stratification by low and high SES, where we found that the age gradient was not solely reflecting socioeconomic differences across the ages.

Comparisons to other studies

Consistent with country studies, in this paper we show that delaying first birth beyond the teen years and into the 20s has a positive impact on child survival. While from the 2005–2006 India sample, Raj et al13 found that maternal age only has a significant effect on stunting and underweight, in the current study that applies to 55 low- to middle-income countries, we find that older maternal age has a significant effect on reducing infant mortality, stunting, underweight, diarrhoea and moderate to severe anaemia. The broadening of the significant results to include other child health outcomes results from the inclusion of more countries, and also from a wider time span. As the 2005–2006 India National Family Health Survey-3 is one of the 118 surveys within our current study, the comparison between our study and that of Raj et al13 highlights the fact that generalising across countries does not always reflect each country's experience. Thus we include the country-specific examples in the online supplementary appendix (table A3). Even so, for the case of India in our sample we include three National Family Health Surveys (1992, 1998, 2005–2006). Thus, even the country-specific results may differ from the survey-specific results. Taking a broad view, however, the two papers yield the same fundamental conclusion that delaying first birth beyond the teen years is beneficial for child health outcomes.

The results in this paper also compare to those of Subramanian et al39 which tease out the biological from the socioeconomic predictors of child health outcomes. If being a young mother is associated with low SES in ways we have not controlled for, maternal age at first birth may simply be a proxy for SES. However, if this were true, we would expect the effect of young fathers to be similar to that of mothers (Subramanian et al39 put forward this idea of looking at the differential effects of maternal and paternal indicators on child health as a method of distinguishing between biological and social mechanisms).

Limitations of the study

Although this study provides important insights into the benefits to child health of delaying first birth to age 27–29, there are certain limitations that should be considered when interpreting the results. The primary variable of interest, the age of the mother at first birth, is subject to measurement error as data collection of this variable relies on recall by the respondent. The same holds true for identifying the population of children within the 0–11- and 12–60-month age ranges. We already include the 60-month-old children (which would normally be restricted to 12–59 months) as it is common for the mother to round up in her recall of the child's age. The result is that a larger fraction of children are reported to be 60 months rather than 59 months. As this inconsistency is attributed to recall error, we follow the WHO guidelines and include the 60-month-old children in the child group. For the women's age, we assume that measurement error increases with actual age. Given our concern over young mothers, then the measurement error on the age will be minimised for this group of interest.

A further limitation of the model is that the socioeconomic measures of male and female education, along with the wealth index, may not fully capture the SES of the woman and her child. While we include information about location of residence, piped water to the house and flush toilet, these all serve as proxies for actual SES. Any unobserved wealth captured in the residual will confound the current results. Factors such as actual household income and education quality are such variables that we are unable to control for in the regression and may significantly influence child health outcomes and shape our understanding of the role of SES factors.

Observational studies are subject to the limitation of omitted variables. In this case, there may be variables that are correlated with the age of the mother at birth, but for which we do not control. This would mean that the significance attributed to the age of the mother as a significant correlate of child health outcomes, may in fact be a proxy for other omitted factors. Fixed effects on year of birth are included in both the unadjusted and adjusted regressions to control for common factors in a given year, and secular changes over time. Country fixed effects are also included in the unadjusted and adjusted regressions to control for factors that may be common to women within the same country and are unchanging over time. The covariates control for deviations from the country average and the global time trends in the variables included in the adjusted regressions. However, there may be some factors that are correlated to the explanatory variable of interest that is omitted from the regression. In which case, the regression coefficients have omitted variable bias. Omitted variables correlated to the age of the mother could include place of delivery, trained or untrained birth attendance and breastfeeding.

One of the key outcomes of interest in this study is infant mortality. Infant mortality is aggregated across all causes of death. However, it could be reasonably expected that the age of the mother affects infant mortality outcomes by cause of death. Using a range of child health outcomes in this study, we have illustrated how the age of the mother is differentially (or similarly) related to various outcomes. However, an investigation of the vulnerability to death by, say, pneumonia, diarrhoea, malaria or AIDS, by the age of the mother is beyond the scope of this study as cause of death for children is not recorded in the DHS.

Conclusions and implications

The current study documents that the first-born child of a woman aged <27–29 in low- to middle-income countries, is at a higher risk of infant mortality, stunting, underweight, diarrhoea and moderate to severe anaemia, but not wasting. Children born to women aged 12–14 or 15–17 are significantly more likely to die in their first year of life than children born to women aged 27–29. The risk of stunting, diarrhoea and anaemia diminishes significantly as a woman delays her first birth through to age 27–29, when the risk is minimised. The risk of underweight decreases significantly as a woman delays her first birth and is minimised by age 21. These results offer support to the evidence of the benefits of delaying first birth to offspring. Importantly, beyond just avoiding teen pregnancy, the results in this study show that it is optimal to delay first birth until age 27–29. The results reveal that interventions designed to target adolescents potentially omit a group of women in their early 20s who are also at risk of having children with poor health outcomes. The development of programmes targeting women in general, and not just teen mothers, should provide women and families with the tools to make informed decisions over the timing of their first birth. These programmes can highlight the benefits of delaying the first birth, allowing women to mature biologically, and provide a mechanism for young female family members to improve their knowledge and skills in childcare and family planning, and empowering female autonomy in decision making within the household.

Our results indicated that while the absolute risk of poor child health outcomes is lower when mothers are in a high SES household, there remains a high RR of poor child health outcomes for young mothers even in high SES households. The persistence of the age gradient across the SES groups highlights that child and maternal health issues associated with the age of the mother cut across socioeconomic lines and the children of young rich women are not shielded from the RR of a poor health outcome. This indicates that the biological immaturity of young mothers also affects child health outcomes in addition to the social disadvantage young mothers often face.

When encouraging women to delay their first birth, and encouraging families to permit the delay when the women are not granted autonomy over their reproductive health decisions, this should be accompanied by the provision of viable and valuable alternatives. Education programs aimed at encouraging women to stay in school, take on meaningful employment opportunities, and provide service to the community, relieve the immediacy of the need or desire for childbearing. It also empowers women by demonstrating to themselves and their families that their contribution to society need not only be defined by their reproductive life. By delaying a few years and engaging in other activities the women contribute to society as well as broadening their skills and knowledge to go on to be more informed and better educated mothers. These benefits to the women then trickle down through the generations and benefit their offspring. In this paper, we show what those benefits are in terms of health, but future studies may highlight the educational and social benefits for children if women delay their first birth.

Supplementary Material

Author's manuscript
Reviewer comments

Acknowledgments

The authors thank Laura Khan and June Po for their invaluable research assistance in helping with the preparation of the manuscript draft.

Footnotes

To cite: Finlay JE, Özaltin E, Canning D. The association of maternal age with infant mortality, child anthropometric failure, diarrhoea and anaemia for first births: evidence from 55 low- and middle-income countries. BMJ Open 2011;2:e000226. doi:10.1136/bmjopen-2011-000226

Funding: We thank the William and Flora Hewlett Foundation for support of this research. Conception of this paper was funded by the Center for Global Development. Researchers operated independently from the funders of this work, and funders neither provided nor were required to provide review and approval of this research.

Competing interests: None.

Ethics approval: The Demographic and Health Surveys data collection procedures were approved by ICF Macro International (Calverton, Maryland, USA) Institutional Review Board as well as by the relevant body in each country which approves research studies on human subjects. Oral informed consent for the interview/survey was obtained from respondents by interviewers. The current study was reviewed by the Harvard School of Public Health Institutional Review Board (Protocol #20069-101) and was ruled exempt from full review because the study was based on an anonymous public use data set with no identifiable information on the survey participants.

Contributors: JEF co-led the conception and interpretation of results in this study. She assisted with drafting the manuscript. She prepared the data, empirical analysis and tables presented in the paper. As guarantor, she accepts full responsibility for this submitted work, had access to the data and controlled the decision to publish. EÖ assisted with conception of the article themes, compilation of the data set and empirical analysis for this study, and critical revision of the paper. DC led the conception of this study and interpretation of study findings as well as assisting with the drafting of the manuscript. All authors have seen and approved the final version of the manuscript.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: Data are available on request to Macro ICF at http://www.measuredhs.com/.

References

  • 1.United Nations We Can End Poverty 2015: Millennium Development Goals, United Nations, 2011 [Google Scholar]
  • 2.Subramanian SV, Ackerson LK, Davey Smith G, et al. Association of maternal height with child mortality, anthropometric failure, and anemia in India. JAMA 2009;301:1691–701 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ozaltin E, Hill K, Subramanian SV. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. JAMA 2010;303:1507–16 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Temin M, Levine R. Start with a Girl: A New Agenda for Global Health. A Girls Count Report on Adolescent Girls. Washington, DC: Center for Global Development, 2009 [Google Scholar]
  • 5.Kembo J, Van Ginneken JK. Determinants of infant and child mortality in Zimbabwe: results of multivariate hazard analysis. Demogr Res 2009;21:367–84 [Google Scholar]
  • 6.Knodel J, Herman AT. Effects of birth rank, maternal age, birth interval and sibship on infant and child mortality: Evidence from 18th and 19th Century Reproductive Histories. Am J Public Health 1984;74:1098–106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Manda SO. Birth intervals, breastfeeding and determinants of childhood mortality in Malawi. Soc Sci Med 1999;48:301–12 [DOI] [PubMed] [Google Scholar]
  • 8.Reynolds HW, Wong EL, Tucker H. Adolescents' use of maternal and child health services in developing countries. Int Fam Plann Persp 2006;32:6–16 [DOI] [PubMed] [Google Scholar]
  • 9.Villar J, Belizan J. The relative contribution of prematurity and fetal growth retardation to low birth weight in developing and developed societies. Am J Obstet Gynecol 1982;143:793–8 [DOI] [PubMed] [Google Scholar]
  • 10.Vitolo MR, Gama CM, Bortolini GA, et al. Some risk factors associated with overweight, stunting and wasting among children under 5 years old. J Pediatr (Rio J) 2008;84:251–7 [DOI] [PubMed] [Google Scholar]
  • 11.Wang SC, Lee SH, Lee MC, et al. The effects of age and aboriginality on the incidence of low birth weight in mountain townships of Taiwan. J Public Health (Oxf) 2009;31:406–12 [DOI] [PubMed] [Google Scholar]
  • 12.Hobcraft J. Fertility patterns and child survival: a comparative analysis. Popul Bull UN 1992;33:1–31 [PubMed] [Google Scholar]
  • 13.Raj A, Saggurti N, Winter M, et al. The effect of maternal child marriage on morbidity and mortality of children under 5 in India: cross sectional study of a nationally representative sample. BMJ 2010;340:b4258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Trussell J, Hammerslough C. A hazards-model analysis of the covariates of infant and child mortality in Sri Lanka. Demography 1983;20:1–26 [PubMed] [Google Scholar]
  • 15.ICF Macro DHS final reports. In: DHS M, ed. Calverton, 2011 [Google Scholar]
  • 16.Cooper LG, Leeland NL, Alexander G. Effect of maternal age on birth outcomes among young adolescents. Soc Biol 1995;42:22–35 [DOI] [PubMed] [Google Scholar]
  • 17.Fraser AM, Brockert JE, Ward RH. Association of young maternal age with adverse reproductive outcomes. N Engl J Med 1995;332:1113–18 [DOI] [PubMed] [Google Scholar]
  • 18.Geronimus AT. On teenage childbearing and neonatal mortality in the United States. Popul Dev Rev 1987;13:245–79 [Google Scholar]
  • 19.Geronimus AT, Korenman S, Hillemeier MM. Does young maternal age adversely affect child development? Evidence from cousin comparisons in the United States. Popul Dev Rev 1994;20:585–609 [Google Scholar]
  • 20.Horon IL, Strobino DM, MacDonald HM. Birth weights among infants born to adolescent and young adult women. Am J Obstet Gynecol 1983;146:444–9 [DOI] [PubMed] [Google Scholar]
  • 21.Trussell J. Teenage pregnancy in the United States. Fam Plann Perspect 1988;20:262–72 [PubMed] [Google Scholar]
  • 22.Ventura SJ, Mathews TJ, Hamilton BE. Births to teenagers in the United States, 1940-2000. Natl Vital Stat Rep 2001;49:1–23 [PubMed] [Google Scholar]
  • 23.Alam N. Teenage motherhood and infant mortality in Bangladesh: maternal age-dependent effect of parity one. J Biosoc Sci 2000;32:229–36 [DOI] [PubMed] [Google Scholar]
  • 24.DHS Demographic and Health Surveys. Calverton, MD: MEASURE DHS, 2009 [Google Scholar]
  • 25.Rutstein SO, Rojas G. Guide to DHS Statistics. Calverton, MD: ORC Macro, MEASURE DHS+, 2003 [Google Scholar]
  • 26.Wirth ME, Wirth E, Delamonica E, et al. Monitoring Health Equity in the MDGs: A Practical Guide. New York: CIESIN/UNICEF, 2006 [Google Scholar]
  • 27.Vaessen M. The potential of the demographic and health surveys (DHS) for the evaluation and monitoring of maternal and child health indicators. In: Khlat M, ed. Demographic Evaluation of Health Programmes (Proceedings). Paris: CICRED/UNFPA, 1996 [Google Scholar]
  • 28.Pullum TW. An Assessment of the Quality of Data on Health and Nutrition in the DHS Surveys, 1993-2003. Calverton, MD, USA: Macro International Inc, 2008 [Google Scholar]
  • 29.ICF Macro Demographic and health survey interviewer's manual. In: Macro International, ed. Calverton, MD, USA: ICF Macro, 2006 [Google Scholar]
  • 30.ICF Macro 2008. Description of the demographic and health surveys individual recode data file. MEASURE DHS Basic Documentation No. 2. Calverton, Maryland, USA: ICF Macro; http://www.measuredhs.com/pubs/search/search_results.cfm?Type=5&srchTp=type&newSrch=1 (accessed 1 Jun 2011). [Google Scholar]
  • 31.ICF Macro 2011. Demographic and Health Survey Interviewer's Manual. MEASURE DHS Basic Documentation No. 2. Calverton, Maryland, USA: ICF Macro [Google Scholar]
  • 32.ICF Macro Measure DHS biomarkers inventory. In: DHS M, ed. 2011. http://www.measuredhs.com/aboutsurveys/biomarkers/surveys.cfm (accessed 1 Jun 1 2011). [Google Scholar]
  • 33.Borghi E, de Onis M, Garza C, et al. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat Med 2006;25:247–65 [DOI] [PubMed] [Google Scholar]
  • 34.Filmer D, Pritchett LH. Estimating wealth effects without expenditure data–or tears: an application to educational enrollments in states of India. Demography 2001;38:115–32 [DOI] [PubMed] [Google Scholar]
  • 35.Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159:702–6 [DOI] [PubMed] [Google Scholar]
  • 36.Deaton A. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. Baltimore: World Bank, 1997 [Google Scholar]
  • 37.Mathews TJ, Hamilton BE. Mean age of mother, 1970-2000. Natl Vital Stat Rep 2002;51:1–13 [PubMed] [Google Scholar]
  • 38.Bongaarts J. Does family planning reduce infant mortality rates? Popul Dev Rev 1987;13:323–34 [Google Scholar]
  • 39.Subramanian SV, Ackerson LK, Smith GD. Parental BMI and childhood undernutrition in India: an assessment of intrauterine influence. Pediatrics 2010;126:663–71 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Author's manuscript
Reviewer comments

Articles from BMJ Open are provided here courtesy of BMJ Publishing Group

RESOURCES