Abstract
The photosensitized reduction of heptylviologen in the bulk aqueous phase of phosphatidylcholine vesicles containing EDTA inside and a membrane-bound tris(2,2′-bipyridine)ruthenium(2+) derivative is enhanced by a factor of 6.5 by the addition of valinomycin in the presence of K+. A 3-fold stimulation by gramicidin and carbonyl cyanide m-chlorophenylhydrazone is observed. The results suggest that, under these conditions, the rate of photoinduced electron transfer across vesicle walls in the absence of ion carriers is limited by cotransport of cations. The rate of electron transfer across vesicle walls could be influenced further by generating transmembrane potentials with K+ gradients in the presence of valinomycin. When vesicles are made with transmembrane potentials, interior more negative, the quantum yield of heptylviologen reduction is doubled, and, conversely, when vesicles are made with transmembrane potentials, interior more positive, the quantum yield is decreased and approaches the value found in the absence of valinomycin.
Keywords: solar energy, membrane, ruthenium complex, ionophore, transmembrane potential
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batzri S., Korn E. D. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973 Apr 16;298(4):1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
- Berns D. S. Photosensitive bilayer membranes as model systems for photobiological processes. Photochem Photobiol. 1976 Aug;24(2):117–139. doi: 10.1111/j.1751-1097.1976.tb06807.x. [DOI] [PubMed] [Google Scholar]
- Bolton J. R. Solar fuels. Science. 1978 Nov 17;202(4369):705–711. doi: 10.1126/science.202.4369.705. [DOI] [PubMed] [Google Scholar]
- Cafiso D. S., Hubbell W. L. Estimation of transmembrane potentials from phase equilibria of hydrophobic paramagnetic ions. Biochemistry. 1978 Jan 10;17(1):187–195. doi: 10.1021/bi00594a028. [DOI] [PubMed] [Google Scholar]
- Ford W. E., Otvos J. W., Calvin M. Photosensitised electron transport across phospholipid vesicle walls. Nature. 1978 Aug 3;274(5670):507–508. doi: 10.1038/274507a0. [DOI] [PubMed] [Google Scholar]
- Ford W. E., Otvos J. W., Calvin M. Photosensitized electron transport across lipid vesicle walls: quantum yield dependence on sensitizer concentration. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3590–3593. doi: 10.1073/pnas.76.8.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
- Johnson S. M., Bangham A. D. Potassium permeability of single compartment liposomes with and without valinomycin. Biochim Biophys Acta. 1969 Oct 14;193(1):82–91. doi: 10.1016/0005-2736(69)90061-3. [DOI] [PubMed] [Google Scholar]
- Kurihara K., Sukigara M., Toyoshima Y. Photoinduced charge separation in liposomes containing chlorophyll a. I. Photoreduction of copper(II) by potassium ascorbate through liposome bilayer containing purified chlorophyll a. Biochim Biophys Acta. 1979 Jul 10;547(1):117–126. doi: 10.1016/0005-2728(79)90100-2. [DOI] [PubMed] [Google Scholar]
- Kurihara K., Toyoshima Y., Sukigara M. Photoinduced charge separation in liposomes containing chlorophyll a. II. The effect of ion transport across membrane on the photoreduction of Fe(CN)6(3-). Biochem Biophys Res Commun. 1979 May 14;88(1):320–326. doi: 10.1016/0006-291x(79)91732-7. [DOI] [PubMed] [Google Scholar]
- Laprade R., Ciani S., Eisenman G., Szabo G. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpreatation. Membranes. 1975;3:127–214. [PubMed] [Google Scholar]
- Neumcke B. The action of uncouplers on lipid bilayer membranes. Membranes. 1975;3:215–253. [PubMed] [Google Scholar]