Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Apr;78(4):2549–2553. doi: 10.1073/pnas.78.4.2549

Specific binding of phorbol ester tumor promoters to intact primary epidermal cells from Sencar mice.

V Solanki, T J Slaga
PMCID: PMC319386  PMID: 6941309

Abstract

The binding of [20-3H]phorbol 12,13-dibutyrate ([3H]PDB) to intact living epidermal cells in monolayer culture was characterized. At 37 degrees C, the maximum specific [3H]PDB binding (binding displaceable by 30 microM unlabeled PDB) was attained in 15--20 min and was followed by a rapid decrease (down regulation) of radioactivity bound to the cells. The activity lost by the cells during this decrease was found in the incubation medium. Prior exposure of cells to phorbol 12-myristate 13-acetate (PMA; 12-O-tetradecanoylphorbol 13-acetate) but not to phorbol for 2 hr at 37 degrees C caused approximately 55% reduction in the number of measurable binding sites for [3H]PDB. The down regulation was temperature sensitive; there was no loss of radioactivity after 1 hr at 4 degrees C. The specific binding of [3H]PDB at 4 degrees C reached equilibrium in 15--20 min and was saturable and freely reversible. At equilibrium, epidermal cells contained 1.2 x 10(5) binding sites per cell, and binding sites had a KD of 10 nM. Specificity of binding was shown by the observation that the biologically active phorbol esters PMA and 12-deoxyphorbol 13-decanoate inhibited the binding, whereas the inactive parent compound phorbol and the nonphorbol tumor promoter anthralin did not have any effect. The abilities of these compounds to inhibit [3H]PDB binding directly correlates with their tumor promoting activities. Epidermal cells exposed to retinoic acid or fluocinolone acetonide for 24 hr had similar [3H]PDB binding characteristics as untreated cells suggesting that inhibition of tumor promotion induced by these compounds is not mediated through alterations in the phorbol ester binding sites.

Full text

PDF
2550

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOUTWELL R. K. SOME BIOLOGICAL ASPECTS OF SKIN CARCINOGENISIS. Prog Exp Tumor Res. 1964;4:207–250. doi: 10.1159/000385978. [DOI] [PubMed] [Google Scholar]
  2. Blumberg P. M., Driedger P. E., Rossow P. W. Effect of a phorbol ester on a transformation-sensitive surface protein of chick fibroblasts. Nature. 1976 Dec 2;264(5585):446–447. doi: 10.1038/264446a0. [DOI] [PubMed] [Google Scholar]
  3. Boutwell R. K. The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol. 1974 Jan;2(4):419–443. doi: 10.3109/10408447309025704. [DOI] [PubMed] [Google Scholar]
  4. Brown K. D., Dicker P., Rozengurt E. Inhibition of epidermal growth factor binding to surface receptors by tumor promotors. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1037–1043. doi: 10.1016/0006-291x(79)90221-3. [DOI] [PubMed] [Google Scholar]
  5. Cheng S. Y., Maxfield F. R., Robbins J., Willingham M. C., Pastan I. H. Receptor-mediated uptake of 3,3',5-triiodo-L-thyronine by cultured fibroblasts. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3425–3429. doi: 10.1073/pnas.77.6.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delclos K. B., Nagle D. S., Blumberg P. M. Specific binding of phorbol ester tumor promoters to mouse skin. Cell. 1980 Apr;19(4):1025–1032. doi: 10.1016/0092-8674(80)90093-8. [DOI] [PubMed] [Google Scholar]
  7. Driedger P. E., Blumberg P. M. Specific binding of phorbol ester tumor promoters. Proc Natl Acad Sci U S A. 1980 Jan;77(1):567–571. doi: 10.1073/pnas.77.1.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer S. M., Viaje A., Harris K. L., Miller D. R., Bohrman J. S., Slaga T. J. Improved conditions for murine epidermal cell culture. In Vitro. 1980 Feb;16(2):180–188. doi: 10.1007/BF02831508. [DOI] [PubMed] [Google Scholar]
  9. Fujiki H., Mori M., Nakayasu M., Terada M., Sugimura T. A possible naturally occurring tumor promoter, teleocidin B from Streptomyces. Biochem Biophys Res Commun. 1979 Oct 12;90(3):976–983. doi: 10.1016/0006-291x(79)91923-5. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  11. Haigler H. T., McKanna J. A., Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol. 1979 May;81(2):382–395. doi: 10.1083/jcb.81.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. King A. C., Hernaez-Davis L., Cuatrecasas P. Lysomotropic amines cause intracellular accumulation of receptors for epidermal growth factor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3283–3287. doi: 10.1073/pnas.77.6.3283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee L. S., Weinstein I. B. Mechanism of tumor promoter inhibition of cellular binding of epidermal growth factor. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5168–5172. doi: 10.1073/pnas.76.10.5168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee L. S., Weinstein I. B. Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors. Science. 1978 Oct 20;202(4365):313–315. doi: 10.1126/science.308698. [DOI] [PubMed] [Google Scholar]
  15. Levitzki A., Willingham M., Pastan I. Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1980 May;77(5):2706–2710. doi: 10.1073/pnas.77.5.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Magun B. E., Matrisian L. M., Bowden G. T. Epidermal growth factor. Ability of tumor promoter to alter its degradation, receptor affinity and receptor number. J Biol Chem. 1980 Jul 10;255(13):6373–6381. [PubMed] [Google Scholar]
  17. Maxfield F. R., Willingham M. C., Davies P. J., Pastan I. Amines inhibit the clustering of alpha2-macroglobulin and EGF on the fibroblast cell surface. Nature. 1979 Feb 22;277(5698):661–663. doi: 10.1038/277661a0. [DOI] [PubMed] [Google Scholar]
  18. Mufson R. A., Fischer S. M., Verma A. K., Gleason G. L., Slaga T. J., Boutwell R. K. Effects of 12-O-tetradecanoylphorbol-13-acetate and mezerein on epidermal ornithine decarboxylase activity, isoproterenol-stimulated levels of cyclic adenosine 3':5'-monophosphate, and induction of mouse skin tumors in vivo. Cancer Res. 1979 Dec;39(12):4791–4795. [PubMed] [Google Scholar]
  19. Murray A. W., Fusenig N. E. Binding of epidermal growth factor to primary and permanent cultures of mouse epidermal cells: inhibition by tumor-promoting phorbol esters. Cancer Lett. 1979 Jul;7(2-3):71–77. doi: 10.1016/s0304-3835(79)80098-1. [DOI] [PubMed] [Google Scholar]
  20. Schlessinger J., Shechter Y., Willingham M. C., Pastan I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2659–2663. doi: 10.1073/pnas.75.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shoyab M., De Larco J. E., Todaro G. J. Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors. Nature. 1979 May 31;279(5712):387–391. doi: 10.1038/279387a0. [DOI] [PubMed] [Google Scholar]
  22. Sivak A. Cocarcinogenesis. Biochim Biophys Acta. 1979 Feb 4;560(1):67–89. doi: 10.1016/0304-419x(79)90003-9. [DOI] [PubMed] [Google Scholar]
  23. Slaga T. J., Fischer S. M., Nelson K., Gleason G. L. Studies on the mechanism of skin tumor promotion: evidence for several stages in promotion. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3659–3663. doi: 10.1073/pnas.77.6.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Slaga T. J., Klein-Szanto A. J., Fischer S. M., Weeks C. E., Nelson K., Major S. Studies on mechanism of action of anti-tumor-promoting agents: their specificity in two-stage promotion. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2251–2254. doi: 10.1073/pnas.77.4.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solanki V., Slaga T. J., Callaham M., Huberman E. Down regulation of specific binding of [20-3H]phorbol 12,13-dibutyrate and phorbol ester-induced differentiation of human promyelocytic leukemia cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1722–1725. doi: 10.1073/pnas.78.3.1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Verma A. K., Rice H. M., Shapas B. G., Boutwell R. K. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis by vitamin A analogs (retinoids). Cancer Res. 1978 Mar;38(3):793–801. [PubMed] [Google Scholar]
  27. Weeks C. E., Slaga T. J., Hennings H., Gleason G. L., Bracken W. M. Inhibition of phorbol ester-induced tumor promotion in mice by vitamin A analog and anti-inflammatory steroid. J Natl Cancer Inst. 1979 Aug;63(2):401–406. [PubMed] [Google Scholar]
  28. Yuspa S. H., Lichti U., Ben T., Patterson E., Hennings H., Slaga T. J., Colburn N., Kelsey W. Phorbol esters stimulate DNA synthesis and ornithine decarboxylase activity in mouse epidermal cell cultures. Nature. 1976 Jul 29;262(5567):402–404. doi: 10.1038/262402a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES