Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 May;78(5):2957–2961. doi: 10.1073/pnas.78.5.2957

Monomeric chlorophyll a enol: Evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis

Michael R Wasielewski 1, James R Norris 1, Lester L Shipman 1, Chih-Ping Lin 1, Walter A Svec 1
PMCID: PMC319478  PMID: 16593015

Abstract

The chlorophyll a (Chl a) special-pair model of the primary donor of photosystem I (P700) does not account in a completely adequate fashion for the magnetic resonance properties observed for P700+. Moreover, P700 is at least 420 mV easier to oxidize than is Chl a in vitro. Neither Chl a dimer formation nor selective ligation of Chl a can account for this potential difference. Enolization of the Chl a ring V β-keto ester results in a very different π electronic structure. The Chl a enol can be trapped as a silyl enol ether. In addition, the enol analog 9-desoxo-9,10-dehydro-Chl a can be prepared. Both the trapped enol and its 9-H analog are ≈350 mV easier to oxidize than Chl a. The ESR spectrum of the cation radical consists of a single 6.1-G gaussian line that is line narrowed relative to that of Chl a+ in a manner similar to P700+. Electron-nuclear double resonance (ENDOR) spectroscopy resolves only a 3.5-MHz hyperfine splitting for the 3-methyl-group. The remaining splittings are all less than 3.5 MHz. The second moment of the ESR line of fully 13C-enriched 9-desoxo-9,10-dehydro-Chl a+ agrees with that of [13C]P700+ to within 10%. Application of the special-pair model to the [13C]P700+ second-moment data yields a 100% error. Ab initio molecular orbital calculations on ethyl chlorophyllide a enol cation bear out the ESR and ENDOR data. We conclude that a monomeric Chl a enol model provides a better description of the magnetic resonance parameters and oxidation potential of P700 than a Chl a special-pair model.

Keywords: ESR, redox potential, cation radical, electronic structure

Full text

PDF
2958

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bearden A. J., Malkin R. Primary photochemical reactions in chloroplast photosynthesis. Q Rev Biophys. 1974 May;7(2):131–177. doi: 10.1017/s0033583500001396. [DOI] [PubMed] [Google Scholar]
  2. Davis M. S., Forman A., Fajer J. Ligated chlorophyll cation radicals: Their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4170–4174. doi: 10.1073/pnas.76.9.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans M. C., Sihra C. K., Slabas A. R. The oxidation-reduction potential of the reaction-centre chlorophyll (P700) in Photosystem I. Evidence for multiple components in electron-paramagnetic-resonance signal 1 at low temperature. Biochem J. 1977 Jan 15;162(1):75–85. doi: 10.1042/bj1620075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feher G., Hoff A. J., Isaacson R. A., Ackerson L. C. ENDOR experiments on chlorophyll and bacteriochlorophyll in vitro and in the photosynthetic unit. Ann N Y Acad Sci. 1975 Apr 15;244:239–259. doi: 10.1111/j.1749-6632.1975.tb41534.x. [DOI] [PubMed] [Google Scholar]
  5. Fetterman L. M., Galloway L., Winograd N., Fong F. K. The role of water on the photoactivity of chlorophyll a. In vitro experimental characterization of the PSI Light Reaction in photosynthesis. J Am Chem Soc. 1977 Jan 19;99(2):653–655. doi: 10.1021/ja00444a078. [DOI] [PubMed] [Google Scholar]
  6. KOK B. Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 millimicrons. Biochim Biophys Acta. 1961 Apr 15;48:527–533. doi: 10.1016/0006-3002(61)90050-6. [DOI] [PubMed] [Google Scholar]
  7. Knaff D. B., Malkin R. The oxidation-reduction potentials of electron carriers in chloroplast photosystem I fragments. Arch Biochem Biophys. 1973 Nov;159(1):555–562. doi: 10.1016/0003-9861(73)90488-8. [DOI] [PubMed] [Google Scholar]
  8. Norris J. R., Scheer H., Druyan M. E., Katz J. J. An electron-nuclear double resonance (ENDOR) study of the special pair model for photo-reactive chlorophyll in photosynthesis. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4897–4900. doi: 10.1073/pnas.71.12.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Norris J. R., Uphaus R. A., Crespi H. L., Katz J. J. Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci U S A. 1971 Mar;68(3):625–628. doi: 10.1073/pnas.68.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Norris J. R., Uphaus R. A., Katz J. J. Electron spin resonance in 13 C-labelled chlorophyll and 13 C-labelled algae. Biochim Biophys Acta. 1972 Aug 17;275(2):161–168. doi: 10.1016/0005-2728(72)90036-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES