Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 May;78(5):2990–2994. doi: 10.1073/pnas.78.5.2990

Adrenocorticotropin-like and alpha-melanotropin-like peptides in a subpopulation of human gastrin cell granules: bioassay, immunoassay, and immunocytochemical evidence.

L I Larsson
PMCID: PMC319485  PMID: 6265928

Abstract

Adrenocorticotropin (ACTH)-like and alpha-melanotropin (alpha-MSH)-like peptides have been localized to a subpopulation of cytoplasmic (secretory) granules of human antropyloric gastric cells and of fetal and neoplastic gastrin cells. These granules also store gastrin and belong to the electron-dense variety of gastrin cell granules. Gastrin cells also contain granules of low to medium electron density; these store only gastrin and do not react with ACTH or alpha-MSH antisera. The alpha-MSH immunoreactive peptide was shown also to display alpha-MSH bioactivity by a combined immunosorbent-bioassay technique. This peptide cochromatographs with synthetic alpha-MSH in several systems and is not detected in oxyntic mucosa or in gastric muscle wall. As in the pituitary intermediate lobe, the alpha-MSH-like peptide may be formed by cleavage of ACTH-like peptides also in gastrin cells. These data provide additional evidence for local formation of ACTH/alpha-MSH-related peptides in gastrin cells and suggest a heterogenous peptide make-up of endocrine cell granules.

Full text

PDF
2991

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buffa R., Crivelli O., Fiocca R., Fontana P., Solcia E. Complement-mediated unspecific binding of immunoglobulins to some endocrine cells. Histochemistry. 1979 Sep;63(1):15–21. doi: 10.1007/BF00508008. [DOI] [PubMed] [Google Scholar]
  2. Carter R. J., Shuster S. Sensitive new in vitro bioassay for melanocyte-stimulating activity using the skin of Anolis carolinensis. J Invest Dermatol. 1978 Oct;71(4):229–232. doi: 10.1111/1523-1747.ep12515091. [DOI] [PubMed] [Google Scholar]
  3. Crine P., Gossard F., Seidah N. G., Blanchette L., Lis M., Chrétien M. Concomitant synthesis of beta-endorphin and alpha-melanotropin from two forms of pro-opiomelanocortin in the rat pars intermedia. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5085–5089. doi: 10.1073/pnas.76.10.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feurle G. E., Weber U., Helmstaedter V. Corticotropin-like substances in human gastric antrum and pancreas. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1656–1662. doi: 10.1016/s0006-291x(80)80089-1. [DOI] [PubMed] [Google Scholar]
  5. Feurle G. E., Weber U., Helmstaedter V. beta-Lipotropin-like material in human pancreas and pyloric antral mucosa. Life Sci. 1980 Aug 11;27(6):467–473. doi: 10.1016/0024-3205(80)90127-7. [DOI] [PubMed] [Google Scholar]
  6. Hughes J., Kosterlitz H. W., Smith T. W. The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br J Pharmacol. 1977 Dec;61(4):639–647. doi: 10.1111/j.1476-5381.1977.tb07557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Larsson L-I Corticotropin-like peptides in central nerves and in endocrine cells of gut and pancreas. Lancet. 1977 Dec 24;2(8052-8053):1321–1323. doi: 10.1016/s0140-6736(77)90368-3. [DOI] [PubMed] [Google Scholar]
  8. Larsson L. I. ACTH-like immunoreactivity in the gastrin cell. Independent changes in gastrin and ACTH-like immunoreactivity during ontogeny. Histochemistry. 1978 Jul 12;56(3-4):245–251. doi: 10.1007/BF00495986. [DOI] [PubMed] [Google Scholar]
  9. Larsson L. I., Childers S., Snyder S. H. Met- and Leu-enkephalin immunoreactivity in separate neurones. Nature. 1979 Nov 22;282(5737):407–410. doi: 10.1038/282407a0. [DOI] [PubMed] [Google Scholar]
  10. Larsson L. I. Distribution of ACTH-like immunoreactivity in rat brain and gastrointestinal tract. Histochemistry. 1978 Apr 4;55(3):225–233. doi: 10.1007/BF00495761. [DOI] [PubMed] [Google Scholar]
  11. Larsson L. I. Gastrin and ACTH-like immunoreactivity occurs in two ultrastructurally distinct cell types of rat antropyloric mucosa. Evidence for a non-parallel processing of the peptides during feeding and fasting. Histochemistry. 1978 Nov 24;58(1-2):33–48. doi: 10.1007/BF00489947. [DOI] [PubMed] [Google Scholar]
  12. Larsson L. I. Immunocytochemical characterization of ACTH-like immunoreactivity in cerebral nerves and in endocrine cells of the pituitary and gastrointestinal tract by using region-specific antisera. J Histochem Cytochem. 1980 Feb;28(2):133–141. doi: 10.1177/28.2.6243680. [DOI] [PubMed] [Google Scholar]
  13. Larsson L. I., Jørgensen L. M. Ultrastructural and cytochemical studies on the cytodifferentiation of duodenal endocrine cells. Cell Tissue Res. 1978 Nov 9;194(1):79–102. doi: 10.1007/BF00209235. [DOI] [PubMed] [Google Scholar]
  14. Larsson L. I. Pathology of the gastrin cell. Pathol Annu. 1979;14(Pt 1):293–316. [PubMed] [Google Scholar]
  15. Larsson L. I. Radioimmunochemical characterization of ACTH-like peptides in the antropyloric mucosa. Life Sci. 1979 Oct 29;25(18):1565–1569. doi: 10.1016/0024-3205(79)90438-7. [DOI] [PubMed] [Google Scholar]
  16. Larsson L. I., Rehfeld J. F. Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature. 1977 Sep 22;269(5626):335–338. doi: 10.1038/269335a0. [DOI] [PubMed] [Google Scholar]
  17. Larsson L., Rehfeld J. F. A peptide resembling COOH-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type. Nature. 1979 Feb 15;277(5697):575–578. doi: 10.1038/277575a0. [DOI] [PubMed] [Google Scholar]
  18. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Polak J. M., Bloom S. R., Sullivan S. N., Facer P., Pearse A. G. Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet. 1977 May 7;1(8019):972–974. doi: 10.1016/s0140-6736(77)92277-2. [DOI] [PubMed] [Google Scholar]
  20. Rehfeld J. F. Localisation of gastrins to neuro- and adenohypophysis. Nature. 1978 Feb 23;271(5647):771–773. doi: 10.1038/271771a0. [DOI] [PubMed] [Google Scholar]
  21. Scott A. P., Lowry P. J. Adrenocorticotrophic and melanocyte-stimulating peptides in the human pituitary. Biochem J. 1974 Jun;139(3):593–602. doi: 10.1042/bj1390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scott A. P., Ratcliffe J. G., Rees L. H., Landon J., Bennett H. P., Lowry P. J., McMartin C. Pituitary peptide. Nat New Biol. 1973 Jul 18;244(133):65–67. doi: 10.1038/newbio244065a0. [DOI] [PubMed] [Google Scholar]
  23. Tilders F. J., van Delft A. M., Smelik P. G. Re-introduction and evaluation of an accurate, high capacity bioassay for melanocyte-stimulating hormone using the skin of Anolis carolinensis in vitro. J Endocrinol. 1975 Aug;66(2):165–175. doi: 10.1677/joe.0.0660165. [DOI] [PubMed] [Google Scholar]
  24. Tramu G., Pillez A., Leonardelli J. An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry. J Histochem Cytochem. 1978 Apr;26(4):322–324. doi: 10.1177/26.4.207771. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES