Abstract
Optical methods using changes in fluorescence and absorption of voltage-sensitive dyes were developed to record electrical activity from processes of nerve cells grown in monolayer culture. For transmission measurements, a merocyanine dye was discovered but was more sensitive than others previously tested on cultured neurons. Action potentials from the somata of these cells were detected without averaging, with a signal-to-noise ratio of 20:1. With this dye, electrical responses were simultaneously recorded from many points along the arborization of neuroblastoma cells by using a 10 X 10 array of photodiodes positioned in the microscope image plane. Frequently different processes had different shapes of electrical responses, suggesting regional specializations. Fluorescence measurements with an oxonol dye proved to be more sensitive than transmission measurements, particularly when recording from small processes. By changing the position of the cell relative to a laser microbeam while recording electrically from the cell body, it was possible to monitor the membrane potential in the cell body and in the process simultaneously. From the delay in response in the process, a lower limit for the mean conduction velocity of 0.2-0.6 m/sec was found for 2- to 6- micrometers processes. The mean space constants of processes were estimated by comparing the amplitudes of passive voltage responses in the cell body and growth cone. A lower limit of 400-950 micrometers was obtained for 4- to 7-micrometers processes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cohen L. B., Salzberg B. M., Davila H. V., Ross W. N., Landowne D., Waggoner A. S., Wang C. H. Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol. 1974;19(1):1–36. doi: 10.1007/BF01869968. [DOI] [PubMed] [Google Scholar]
- Cohen L. B., Salzberg B. M., Grinvald A. Optical methods for monitoring neuron activity. Annu Rev Neurosci. 1978;1:171–182. doi: 10.1146/annurev.ne.01.030178.001131. [DOI] [PubMed] [Google Scholar]
- Cohen L. B., Salzberg B. M. Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol. 1978;83:35–88. doi: 10.1007/3-540-08907-1_2. [DOI] [PubMed] [Google Scholar]
- Dichter M. A., Fischbach G. D. The action potential of chick dorsal root ganglion neurones maintained in cell culture. J Physiol. 1977 May;267(2):281–298. doi: 10.1113/jphysiol.1977.sp011813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinvald A., Cohen L. B., Lesher S., Boyle M. B. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. J Neurophysiol. 1981 May;45(5):829–840. doi: 10.1152/jn.1981.45.5.829. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Salzberg B. M., Cohen L. B. Simultaneous recording from several neurones in an invertebrate central nervous system. Nature. 1977 Jul 14;268(5616):140–142. doi: 10.1038/268140a0. [DOI] [PubMed] [Google Scholar]
- Harris A. J., Dennis M. J. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells. Science. 1970 Feb 27;167(3922):1253–1255. doi: 10.1126/science.167.3922.1253. [DOI] [PubMed] [Google Scholar]
- Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moolenaar W. H., Spector I. Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions. J Physiol. 1978 May;278:265–286. doi: 10.1113/jphysiol.1978.sp012303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okun L. M. Isolated dorsal root ganglion neurons in culture: cytological maturation and extension of electrically active processes. J Neurobiol. 1972;3(2):111–151. doi: 10.1002/neu.480030203. [DOI] [PubMed] [Google Scholar]
- Pooler J. Photodynamic alteration of sodium currents in lobster axons. J Gen Physiol. 1972 Oct;60(4):367–387. doi: 10.1085/jgp.60.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RALL W. Electrophysiology of a dendritic neuron model. Biophys J. 1962 Mar;2(2 Pt 2):145–167. doi: 10.1016/s0006-3495(62)86953-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross W. N., Reichardt L. F. Species-specific effects on the optical signals of voltage-sensitive dyes. J Membr Biol. 1979 Aug;48(4):343–356. doi: 10.1007/BF01869445. [DOI] [PubMed] [Google Scholar]
- Ross W. N., Salzberg B. M., Cohen L. B., Grinvald A., Davila H. V., Waggoner A. S., Wang C. H. Changes in absorption, fluorescence, dichroism, and Birefringence in stained giant axons: : optical measurement of membrane potential. J Membr Biol. 1977 May 6;33(1-2):141–183. doi: 10.1007/BF01869514. [DOI] [PubMed] [Google Scholar]
- Salzberg B. M., Grinvald A., Cohen L. B., Davila H. V., Ross W. N. Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol. 1977 Nov;40(6):1281–1291. doi: 10.1152/jn.1977.40.6.1281. [DOI] [PubMed] [Google Scholar]
- Scott B. S., Engelbert V. E., Fisher K. C. Morphological and electrophysiological characteristics of dissociated chick embryonic spinal ganglion cells in culture. Exp Neurol. 1969 Feb;23(2):230–248. doi: 10.1016/0014-4886(69)90060-0. [DOI] [PubMed] [Google Scholar]
- Varon S., Raiborn C. Excitability and conduction in neurons of dissociated ganglionic cell cultures. Brain Res. 1971 Jul 9;30(1):83–98. doi: 10.1016/0006-8993(71)90007-2. [DOI] [PubMed] [Google Scholar]
- Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
- Waggoner A. S., Grinvald A. Mechanisms of rapid optical changes of potential sensitive dyes. Ann N Y Acad Sci. 1977 Dec 30;303:217–241. [PubMed] [Google Scholar]
- Willard A. L. Electrical excitability of outgrowing neurites of embryonic neurones in cultures of dissociated neural plate of Xenopus laevis. J Physiol. 1980 Apr;301:115–128. doi: 10.1113/jphysiol.1980.sp013193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yavin E., Zutra A. Translocation and turnover of phospholipid analogs in plasma membrane-derived vesicles from cell cultures. Biochim Biophys Acta. 1979 Jun 2;553(3):424–437. doi: 10.1016/0005-2736(79)90298-0. [DOI] [PubMed] [Google Scholar]