Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354

N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation.

H Hidaka, Y Sasaki, T Tanaka, T Endo, S Ohno, Y Fujii, T Nagata
PMCID: PMC319788  PMID: 6945588

Abstract

N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and its derivatives are putative calmodulin antagonists that bind to calmodulin and inhibit Ca2+/calmodulin-regulated enzyme activities. Autoradiographic studies using tritiated W-7 showed that this compound penetrates the cell membrane, is distributed mainly in the cytoplasm, and inhibits proliferation of Chinese hamster ovary K1 (CHO-K1) cells. Cytoplasmic [3H]W-7 was excluded completely within 6 hr after removal of [3H]W-7 from the culture medium. N-(6-aminohexyl)-1-naphthalenesulfonamide, an analogue of W-7 that interacts only weakly with calmodulin, proved to be a much weaker inhibitor of cell proliferation. CHO-K1 cells were synchronized by shaking during mitosis and then released into the cell cycle in the presence of 25 microM W-7 or 2.5 mM thymidine for 12 hr. Cell division was observed approximately 6 hr later. The results suggest that the effect of W-7 on cell proliferation might be through selective inhibition of the G1/S boundary phase, which is similar to the effect of excess thymidine. This pharmacological demonstration that cytoplasmic calmodulin is involved in cell proliferation is significant; W-7 and its derivatives may be useful tools for research on calmodulin and cell biology-related studies.

Full text

PDF
4356

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Michell R. H. A comparison of the effects of phytohaemagglutinin and of calcium ionophore A23187 on the metabolism of glycerolipids in small lymphocytes. Biochem J. 1977 May 15;164(2):389–397. doi: 10.1042/bj1640389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boynton A. L., Whitfield J. F., MacManus J. P. Calmodulin stimulates DNA synthesis by rat liver cells. Biochem Biophys Res Commun. 1980 Jul 31;95(2):745–749. doi: 10.1016/0006-291x(80)90849-9. [DOI] [PubMed] [Google Scholar]
  3. Cheung W. Y. Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun. 1970 Feb 6;38(3):533–538. doi: 10.1016/0006-291x(70)90747-3. [DOI] [PubMed] [Google Scholar]
  4. Dedman J. R., Welsh M. J., Means A. R. Ca2+-dependent regulator. Production and characterization of a monospecific antibody. J Biol Chem. 1978 Oct 25;253(20):7515–7521. [PubMed] [Google Scholar]
  5. Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  7. Hidaka H., Asano M., Iwadare S., Matsumoto I., Totsuka T., Aoki N. A novel vascular relaxing agent, N-(6--aminohexyl)-5-chloro-1-naphthalensulfonamide which affects vascular smooth muscle actomyosin. J Pharmacol Exp Ther. 1978 Oct;207(1):8–15. [PubMed] [Google Scholar]
  8. Hidaka H., Asano T. Platelet cyclic 3':5'-nucleotide phosphodiesterase released by thrombin and calcium ionophore. J Biol Chem. 1976 Dec 10;251(23):7508–7516. [PubMed] [Google Scholar]
  9. Hidaka H., Naka M., Yamaki T. Effect of novel specific myosin light chain kinase inhibitors on Ca2+-activated Mg2+-ATPase of chicken gizzard actomyosin. Biochem Biophys Res Commun. 1979 Oct 12;90(3):694–699. doi: 10.1016/0006-291x(79)91883-7. [DOI] [PubMed] [Google Scholar]
  10. Hidaka H., Yamaki T., Asano M., Totsuka T. Involvement of calcium in cyclic nucleotide metabolism in human vascular smooth muscle. Blood Vessels. 1978;15(1-3):55–64. doi: 10.1159/000158153. [DOI] [PubMed] [Google Scholar]
  11. Hidaka H., Yamaki T., Naka M., Tanaka T., Hayashi H., Kobayashi R. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol. 1980 Jan;17(1):66–72. [PubMed] [Google Scholar]
  12. Hidaka H., Yamaki T., Totsuka T., Asano M. Selective inhibitors of Ca2+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol Pharmacol. 1979 Jan;15(1):49–59. [PubMed] [Google Scholar]
  13. Hidaka H., Yamaki T., Yamabe H. Two forms of Ca2+-dependent cyclic 3':5'-nucleotide phosphodiesterase from human aorta and effect of free fatty acids. Arch Biochem Biophys. 1978 Apr 30;187(2):315–321. doi: 10.1016/0003-9861(78)90040-1. [DOI] [PubMed] [Google Scholar]
  14. Kobayashi R., Tawata M., Hidaka H. Ca2+ regulated modulator protein interacting agents: inhibition of Ca2+-Mg2+-ATPase of human erythrocyte ghost. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1037–1045. doi: 10.1016/0006-291x(79)91513-4. [DOI] [PubMed] [Google Scholar]
  15. Lestourgeon W. M., Forer A., Yang Y. Z., Bertram J. S., Pusch H. P. Contractile proteins. Major components of nuclear and chromosome non-histone proteins. Biochim Biophys Acta. 1975 Feb 27;379(2):529–552. [PubMed] [Google Scholar]
  16. MacManus J. P., Boynton A. L., Whitfield J. F. Cyclic AMP and calcium as intracycle regulators in the control of cell proliferation. Adv Cyclic Nucleotide Res. 1978;9:485–491. [PubMed] [Google Scholar]
  17. MacManus J. P., Whitfield J. F., Boynton A. L., Rixon R. H. Role of cyclic nucleotides and calcium in the positive control of cell proliferation. Adv Cyclic Nucleotide Res. 1975;5:719–734. [PubMed] [Google Scholar]
  18. Nagata T., Nawa T. A modification of dry-mounting technique for radioautography of water-soluble compounds. Histochemie. 1966;7(4):370–371. doi: 10.1007/BF00306625. [DOI] [PubMed] [Google Scholar]
  19. Seeman P., Staiman A., Chau-Wong M. The nerve impulse-blocking actions of tranquilizers and the binding of neuroleptics to synaptosome membranes. J Pharmacol Exp Ther. 1974 Jul;190(1):123–130. [PubMed] [Google Scholar]
  20. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  21. Tanaka T., Hidaka H. Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem. 1980 Dec 10;255(23):11078–11080. [PubMed] [Google Scholar]
  22. Tanaka T., Naka M., Hidaka H. Activation of myosin light chain kinase by trypsin. Biochem Biophys Res Commun. 1980 Jan 15;92(1):313–318. doi: 10.1016/0006-291x(80)91554-5. [DOI] [PubMed] [Google Scholar]
  23. Welsh M. J., Dedman J. R., Brinkley B. R., Means A. R. Calcium-dependent regulator protein: localization in mitotic apparatus of eukaryotic cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1867–1871. doi: 10.1073/pnas.75.4.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Welsh M. J., Dedman J. R., Brinkley B. R., Means A. R. Tubulin and calmodulin. Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus. J Cell Biol. 1979 Jun;81(3):624–634. doi: 10.1083/jcb.81.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES