Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jul;78(7):4601–4605. doi: 10.1073/pnas.78.7.4601

Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation

Catherine J Potrikus 1,*, John A Breznak 1,
PMCID: PMC319841  PMID: 16593064

Abstract

Reticulitermes flavipes termites synthesize uric acid via purine-nucleoside phosphorylase (purine-nucleoside: orthophosphate ribosyltransferase, EC 2.4.2.1) and xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, EC 1.2.1.37), but their tissues lack uricase (urate:oxygen oxidoreductase, EC 1.7.3.3) or any other enzyme that degrades uric acid. Nevertheless, uricolysis occurs in termites, but as an anaerobic process mediated by hindgut bacteria. 14C-Tracer experiments showed that termites transport uric acid from the site of synthesis and storage (fat body tissue) to the site of degradation (hindgut microbiota) via Malpighian tubules. Moveover, [1,3-15N]uric acid dissimilated by gut bacteria in vivo leads to assimilation of 15N into termite tissues. NH3, a product of uricolysis, is a potential N source for termites, either directly via glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] activity of fat body tissue or indirectly through microbe assimilation. Symbiotic recycling of uric acid N appears to be important to N conservation in these oligonitrotrophic insects.

Keywords: symbiosis, Reticulitermes flavipes, Malpighian tubules, purine metabolism

Full text

PDF
4602

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Leach J. G., Granovsky A. A. NITROGEN IN THE NUTRITION OF TERMITES. Science. 1938 Jan 21;87(2247):66–67. doi: 10.1126/science.87.2247.66-a. [DOI] [PubMed] [Google Scholar]
  2. PARZEN S. D., FOX A. S. PURIFICATION OF XANTHINE DEHYDROGENASE FROM DROSOPHILA MELANOGASTER. Biochim Biophys Acta. 1964 Dec 23;92:465–471. doi: 10.1016/0926-6569(64)90006-9. [DOI] [PubMed] [Google Scholar]
  3. Potrikus C. J., Breznak J. A. Anaerobic degradation of uric Acid by gut bacteria of termites. Appl Environ Microbiol. 1980 Jul;40(1):125–132. doi: 10.1128/aem.40.1.125-132.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Potrikus C. J., Breznak J. A. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol. 1977 Feb;33(2):392–399. doi: 10.1128/aem.33.2.392-399.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Potrikus C. J., Breznak J. A. Uric Acid-Degrading Bacteria in Guts of Termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol. 1980 Jul;40(1):117–124. doi: 10.1128/aem.40.1.117-124.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schultz J. E., Breznak J. A. Cross-Feeding of Lactate Between Streptococcus lactis and Bacteroides sp. Isolated from Termite Hindguts. Appl Environ Microbiol. 1979 Jun;37(6):1206–1210. doi: 10.1128/aem.37.6.1206-1210.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schultz J. E., Breznak J. A. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol. 1978 May;35(5):930–936. doi: 10.1128/aem.35.5.930-936.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sullivan D. T., Sullivan M. C. Transport defects as the physiological basis for eye color mutants of Drosophila melanogaster. Biochem Genet. 1975 Oct;13(9-10):603–613. doi: 10.1007/BF00484918. [DOI] [PubMed] [Google Scholar]
  9. Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES