Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Feb;78(2):889–892. doi: 10.1073/pnas.78.2.889

DNA sequence of the transfer RNA region of bacteriophage T4: implications for transfer RNA synthesis.

G P Mazzara, G Plunkett 3rd, W H McClain
PMCID: PMC319909  PMID: 6262781

Abstract

Sequences encoding eight tRNAs and two stable RNAs of bacteriophage T4 are grouped together on the T4 genome in two clusters, separated by approximately 500 base pairs. The DNA sequence of part of this region was determined. Within each cluster coding sequences are separated by only one or a few base pairs. These findings imply that the RNAs may be processed from a single multimeric transcript, with initial endonucleolytic cleavages generating the previously characterized monomeric and dimeric precursors.

Full text

PDF
890

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson J. RNA processing and the intervening sequence problem. Annu Rev Biochem. 1979;48:1035–1069. doi: 10.1146/annurev.bi.48.070179.005131. [DOI] [PubMed] [Google Scholar]
  2. Cudny H., Deutscher M. P. Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors. Proc Natl Acad Sci U S A. 1980 Feb;77(2):837–841. doi: 10.1073/pnas.77.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fukada K., Abelson J. DNA sequence of a T4 transfer RNA gene cluster. J Mol Biol. 1980 May 25;139(3):377–391. doi: 10.1016/0022-2836(80)90136-9. [DOI] [PubMed] [Google Scholar]
  4. Goldfarb A., Daniel V. Transcriptional control of two gene subclusters in the tRNA operon of bacteriophage T4. Nature. 1980 Jul 24;286(5771):418–420. doi: 10.1038/286418a0. [DOI] [PubMed] [Google Scholar]
  5. Guthrie C., Scholla C. A. Asymmetric maturation of a dimeric transfer RNA precursor. J Mol Biol. 1980 May 25;139(3):349–375. doi: 10.1016/0022-2836(80)90135-7. [DOI] [PubMed] [Google Scholar]
  6. Guthrie C., Seidman J. G., Altman S., Barrell B. G., Smith J. D., McClain W. H. Identification of tRNA precursor molecules made by phage T4. Nat New Biol. 1973 Nov 7;246(149):6–11. doi: 10.1038/newbio246006a0. [DOI] [PubMed] [Google Scholar]
  7. McClain W. H. A role for ribonuclease III in synthesis of bacteriophage T4 transfer RNAs. Biochem Biophys Res Commun. 1979 Feb 14;86(3):718–724. doi: 10.1016/0006-291x(79)91772-8. [DOI] [PubMed] [Google Scholar]
  8. McClain W. H., Guthrie C., Barrell B. G. The psu1+ amber suppressor gene of bacteriophage T4: identification of its amino acid and transfer RNA. J Mol Biol. 1973 Dec 5;81(2):157–171. doi: 10.1016/0022-2836(73)90186-1. [DOI] [PubMed] [Google Scholar]
  9. McClain W. H., Seidman J. G. Genetic perturbations that reveal tertiary conformation of tRNA precursor molecules. Nature. 1975 Sep 11;257(5522):106–110. doi: 10.1038/257106a0. [DOI] [PubMed] [Google Scholar]
  10. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES