Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Oct 11;12(19):7467–7478. doi: 10.1093/nar/12.19.7467

Aminoacyl RNA domain of turnip yellow mosaic virus Val-RNA interacting with elongation factor Tu

Rajiv L Joshi 1,2, Heinz Faulhammer 2, François Chapeville 1, Mathias Sprinzl 2, Anne-Lise Haenni 1
PMCID: PMC320175  PMID: 16617475

Abstract

Turnip yellow mosaic virus (TYMV) Val-RNA forms a complex with the peptide elongation factor Tu (EF-Tu) in the presence of GTP: the Val-RNA is protected by EF-Tu·GTP from non-enzymatic deacylation and nuclease digestion. The determination of the length of the shortest TYMV Val-RNA fragment that binds EF-Tu·GTP leads us to conclude that the valylated aminoacyl RNA domain equivalent in tRNAs to the continuous helix formed by the acceptor stem and the T arm is sufficient for complex formation. Since the aminoacyl RNA domain is also sufficient for adenylation by the ATP(CTP):tRNA nucleotidyltransferase, an analogy can be drawn between these two tRNA-specific proteins.

Full text

PDF
7467

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Boutorin A. S., Clark B. F., Ebel J. P., Kruse T. A., Petersen H. U., Remy P., Vassilenko S. A study of the interaction of Escherichia coli elongation factor-Tu with aminoacyl-tRNAs by partial digestion with cobra venom ribonuclease. J Mol Biol. 1981 Nov 5;152(3):593–608. doi: 10.1016/0022-2836(81)90271-0. [DOI] [PubMed] [Google Scholar]
  4. Derwenskus K. H., Fischer W., Sprinzl M. Isolation of tRNA isoacceptors by affinity chromatography on immobilized bacterial elongation factor Tu. Anal Biochem. 1984 Jan;136(1):161–167. doi: 10.1016/0003-2697(84)90318-x. [DOI] [PubMed] [Google Scholar]
  5. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Florentz C., Briand J. P., Romby P., Hirth L., Ebel J. P., Glegé R. The tRNA-like structure of turnip yellow mosaic virus RNA: structural organization of the last 159 nucleotides from the 3' OH terminus. EMBO J. 1982;1(2):269–276. doi: 10.1002/j.1460-2075.1982.tb01158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gulewicz K., Faulhammer H. G., Sprinzl M. Properties of native and nicked elongation factor Tu from Thermus thermophilus HB 8. Eur J Biochem. 1981 Dec;121(1):155–162. doi: 10.1111/j.1432-1033.1981.tb06444.x. [DOI] [PubMed] [Google Scholar]
  8. Haenni A. L., Joshi S., Chapeville F. tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol. 1982;27:85–104. doi: 10.1016/s0079-6603(08)60598-x. [DOI] [PubMed] [Google Scholar]
  9. Jekowsky E., Schimmel P. R., Miller D. L. Isolation, characterization and structural implications of a nuclease-digested complex of aminoacyl transfer RNA and Escherichia coli elongation factor Tu. J Mol Biol. 1977 Aug 15;114(3):451–458. doi: 10.1016/0022-2836(77)90262-5. [DOI] [PubMed] [Google Scholar]
  10. Jerez C., Sandoval A., Allende J., Henes C., Ofengand J. Specificity of the interaction of aminoacyl ribonucleic acid with a protein-guanosine triphosphate complex from wheat embryo. Biochemistry. 1969 Jul;8(7):3006–3014. doi: 10.1021/bi00835a049. [DOI] [PubMed] [Google Scholar]
  11. Jonák J., Rychlík I., Smrt J., Holý A. The binding site for the 3'-terminus of aminoacyl-tRNA in the molecule of elongation factor Tu from Escherichia coli. FEBS Lett. 1979 Feb 15;98(2):329–332. doi: 10.1016/0014-5793(79)80210-0. [DOI] [PubMed] [Google Scholar]
  12. Jonák J., Smrt J., Holý A., Rychlík I. Interaction of Escherichia coli EF-Tu.GTP and EF-Tu.GDP with analogues of the 3' terminus of aminoacyl-tRNA. Eur J Biochem. 1980 Apr;105(2):315–320. doi: 10.1111/j.1432-1033.1980.tb04503.x. [DOI] [PubMed] [Google Scholar]
  13. Joshi R. L., Joshi S., Chapeville F., Haenni A. L. tRNA-like structures of plant viral RNAs: conformational requirements for adenylation and aminoacylation. EMBO J. 1983;2(7):1123–1127. doi: 10.1002/j.1460-2075.1983.tb01556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joshi S., Chapeville F., Haenni A. L. Length requirements for tRNA-specific enzymes and cleavage specificity at the 3' end of turnip yellow mosaic virus RNA. Nucleic Acids Res. 1982 Mar 25;10(6):1947–1962. doi: 10.1093/nar/10.6.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joshi S., Haenni A. L. Fluorographic detection of nucleic acids labelled with weak beta-emitters in gels containing high acrylamide concentrations. FEBS Lett. 1980 Aug 25;118(1):43–46. doi: 10.1016/0014-5793(80)81214-2. [DOI] [PubMed] [Google Scholar]
  16. Joshi S., Haenni A. L., Hubert E., Huez G., Marbaix G. In vivo aminoacylation and 'processing' of turnip yellow mosaic virus RNA in Xenopus laevis oocytes. Nature. 1978 Sep 28;275(5678):339–341. doi: 10.1038/275339a0. [DOI] [PubMed] [Google Scholar]
  17. Kawakami M., Tanada S., Takemura S. Properties of alanyl-oligonucleotide, puromycin, and Staphylococcus epidermidis glycyl-tRNA in interaction with elongation factor Tu:GTP complex. FEBS Lett. 1975 Mar 1;51(1):321–324. doi: 10.1016/0014-5793(75)80917-3. [DOI] [PubMed] [Google Scholar]
  18. Krauskopf M., Chen C. M., Ofengand J. Interaction of fragmented and cross-linked Escherichia coli valine transfer ribonucleic acid with T u factor-guanosine triphosphate complex. J Biol Chem. 1972 Feb 10;247(3):842–850. [PubMed] [Google Scholar]
  19. Leberman R. The isolation of plant viruses by means of "simple" coacervates. Virology. 1966 Nov;30(3):341–347. doi: 10.1016/0042-6822(66)90112-7. [DOI] [PubMed] [Google Scholar]
  20. Masiakowski P., Deutscher M. P. Separation of functionally distinct regions of a macromolecular substrate. Stimulation of tRNA nucleotidyltransferase by a nonreacting fragment of tRNA. J Biol Chem. 1979 Apr 25;254(8):2585–2587. [PubMed] [Google Scholar]
  21. Ofengand J. Assay for AA-tRNA recognition by the EFTu-GTP complex of Escherichia coli. Methods Enzymol. 1974;29:661–667. doi: 10.1016/0076-6879(74)29057-8. [DOI] [PubMed] [Google Scholar]
  22. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Picone D., Parmeggiani A. Transfer ribonucleic acid deprived of the C-C-A 3'-extremity can interact with elongation factor Tu. Biochemistry. 1983 Sep 13;22(19):4400–4405. doi: 10.1021/bi00288a009. [DOI] [PubMed] [Google Scholar]
  24. Porter A., Carey N., Fellner P. Presence of a large poly(rC) tract within the RNA of encephalomyocarditis virus. Nature. 1974 Apr 19;248(5450):675–678. doi: 10.1038/248675a0. [DOI] [PubMed] [Google Scholar]
  25. Rietveld K., Van Poelgeest R., Pleij C. W., Van Boom J. H., Bosch L. The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 1982 Mar 25;10(6):1929–1946. doi: 10.1093/nar/10.6.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wikman F. P., Siboska G. E., Petersen H. U., Clark B. F. The site of interaction of aminoacyl-tRNA with elongation factor Tu. EMBO J. 1982;1(9):1095–1100. doi: 10.1002/j.1460-2075.1982.tb01302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES