Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Aug;78(8):4912–4916. doi: 10.1073/pnas.78.8.4912

Initiation factor-independent translation of mRNAs from Gram-positive bacteria.

J R McLaughlin, C L Murray, J C Rabinowitz
PMCID: PMC320292  PMID: 6795625

Abstract

Initiation factor-independent translation of mRNA derived from bacillus phage phi29 DNA occurs with translation systems derived from Bacillus subtilis or Escherichia coli. This is in sharp contrast to the strict dependence on ribosome salt wash fraction of E. coli ribosomes for the translation of T7 and other mRNAs derived from Gram-negative organisms.

Full text

PDF
4913

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benne R., Pouwels P. H. The role of IF-3 in the translation of T7- and phi80trp messenger RNA. Mol Gen Genet. 1975 Sep 8;139(4):311–319. doi: 10.1007/BF00267971. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Burgess R. R., Jendrisak J. J. A procedure for the rapid, large-scall purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry. 1975 Oct 21;14(21):4634–4638. doi: 10.1021/bi00692a011. [DOI] [PubMed] [Google Scholar]
  4. Carrascosa J. L., Camacho A., Moreno F., Jiménez F., Mellado R. P., Viñuela E., Salas M. Bacillus subtilis phage phi29. Characterization of gene products and functions. Eur J Biochem. 1976 Jul 1;66(2):229–241. doi: 10.1111/j.1432-1033.1976.tb10512.x. [DOI] [PubMed] [Google Scholar]
  5. Carrascosa J. L., Viñuela E., Salas M. Proteins induced in Bacillus subtilis infected with bacteriophage phi 29. Virology. 1973 Nov;56(1):291–299. [PubMed] [Google Scholar]
  6. Davison B. L., Leighton T., Rabinowitz J. C. Purification of Bacillus subtilis RNA polymerase with heparin-agarose. In vitro transcription of phi 29 DNA. J Biol Chem. 1979 Sep 25;254(18):9220–9226. [PubMed] [Google Scholar]
  7. Davison B. L., Murray C. L., Rabinowitz J. C. Specificity of promoter site utilization in vitro by bacterial RNA polymerases on Bacillus phage phi 29 DNA. Transcription mapping with exonuclease III. J Biol Chem. 1980 Sep 25;255(18):8819–8830. [PubMed] [Google Scholar]
  8. Ehrlich S. D. DNA cloning in Bacillus subtilis. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1433–1436. doi: 10.1073/pnas.75.3.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
  10. Goldberg M. L., Steitz J. A. Cistron specificity of 30S ribosomes heterologously reconstituted with components from Escherichia coli and Bacillus stearothermophilus. Biochemistry. 1974 May 7;13(10):2123–2129. doi: 10.1021/bi00707a020. [DOI] [PubMed] [Google Scholar]
  11. Gualerzi C., Risuleo G., Pon C. L. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry. 1977 Apr 19;16(8):1684–1689. doi: 10.1021/bi00627a025. [DOI] [PubMed] [Google Scholar]
  12. Guarente L., Lauer G., Roberts T. M., Ptashne M. Improved methods for maximizing expression of a cloned gene: a bacterium that synthesizes rabbit beta-globin. Cell. 1980 Jun;20(2):543–553. doi: 10.1016/0092-8674(80)90640-6. [DOI] [PubMed] [Google Scholar]
  13. Held W. A., Gette W. R., Nomura M. Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S12 in the initiation of natural messenger ribonucleic acid translation. Biochemistry. 1974 May 7;13(10):2115–2122. doi: 10.1021/bi00707a019. [DOI] [PubMed] [Google Scholar]
  14. Hershey J. W., Yanov J., Johnston K., Fakunding J. L. Purification and characterization of protein synthesis initiation factors IF1, IF2, and IF3 from Escherichia coli. Arch Biochem Biophys. 1977 Aug;182(2):626–638. doi: 10.1016/0003-9861(77)90543-4. [DOI] [PubMed] [Google Scholar]
  15. Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Isono S., Isono K. Role of ribosomal protein S1 in portein synthesis: effects of its addition to Bacillus stearothermophilus cell-free system. Eur J Biochem. 1975 Aug 1;56(1):15–22. doi: 10.1111/j.1432-1033.1975.tb02202.x. [DOI] [PubMed] [Google Scholar]
  17. Kay A. C., Graffe M., Grunberg-Manago M. Purification and properties of two initiation factors from Bacillus stearothermophilus. Biochimie. 1976;58(1-2):183–199. doi: 10.1016/s0300-9084(76)80369-0. [DOI] [PubMed] [Google Scholar]
  18. Kreft J., Bernhard K., Goebel W. Recombinant plasmids capable to replication in B. subtilis and E. coli. Mol Gen Genet. 1978 Jun 1;162(1):59–67. doi: 10.1007/BF00333851. [DOI] [PubMed] [Google Scholar]
  19. Kung H. F., Spears C., Schulz T., Weissbach H. Studies on the in vitro synthesis of beta-galactosidase: necessary components in the ribosomal wash. Arch Biochem Biophys. 1974 Jun;162(2):578–584. doi: 10.1016/0003-9861(74)90218-5. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Leffler S., Szer W. Polypeptide chain initiation in Caulobacter crescentus without initiation factor IF-1. J Biol Chem. 1974 Mar 10;249(5):1465–1468. [PubMed] [Google Scholar]
  22. Legualt-Démare L., Chambliss G. H. Selective messenger translation by Bacillus subtilis ribosomes. Mol Gen Genet. 1976 Dec 31;142(4):277–287. doi: 10.1007/BF00271252. [DOI] [PubMed] [Google Scholar]
  23. Leventhal J. M., Chambliss G. H. DNA-directed cell-free protein-synthesizing system of Bacillus subtilis. Biochim Biophys Acta. 1979 Aug 29;564(1):162–171. doi: 10.1016/0005-2787(79)90197-7. [DOI] [PubMed] [Google Scholar]
  24. Lodish H. F. Specificity in bacterial protein synthesis: role of initiation factors and ribosomal subunits. Nature. 1970 May 23;226(5247):705–707. doi: 10.1038/226705a0. [DOI] [PubMed] [Google Scholar]
  25. McGuire J. C., Pène J. J., Barrow-Carraway J. Gene expression during the development of bacteriophage phi 29. 3. Analysis of viral-specific protein synthesis with suppressible mutants. J Virol. 1974 Mar;13(3):690–698. doi: 10.1128/jvi.13.3.690-698.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McQuire J. C., Gilpatrick M. W., Pène J. J. DNA replication of bacteriophage phi29. Effect of two viral genes on the association of phage chromosomes with the host cell membrane. Virology. 1977 May 1;78(1):234–240. doi: 10.1016/0042-6822(77)90094-0. [DOI] [PubMed] [Google Scholar]
  27. Noll M., Hapke B., Schreier M. H., Noll H. Structural dynamics of bacterial ribosomes. I. Characterization of vacant couples and their relation to complexed ribosomes. J Mol Biol. 1973 Apr 5;75(2):281–294. doi: 10.1016/0022-2836(73)90021-1. [DOI] [PubMed] [Google Scholar]
  28. Samuel C. E., D'Ari L., Rabinowitz J. C. Evidence against the folate-mediated formylation of formyl-accepting methionyl transfer ribonucleic acid in Streptococcus faecalis R. J Biol Chem. 1970 Oct 10;245(19):5115–5121. [PubMed] [Google Scholar]
  29. Sharrock W. J., Gold B. M., Rabinowitz J. C. Protein synthesis in Bacillus subtilis. II. Selective translation of natural mRNAs and its possible relation to the species-specific inhibition of protein synthesis by lincomycin and erythromycin. J Mol Biol. 1979 Dec 15;135(3):627–638. doi: 10.1016/0022-2836(79)90168-2. [DOI] [PubMed] [Google Scholar]
  30. Sharrock W. J., Rabinowitz J. C. Protein synthesis in Bacillus subtilis. I. Hydrodynamics and in vitro functional properties of ribosomes from B. subtilis W168. J Mol Biol. 1979 Dec 15;135(3):611–626. doi: 10.1016/0022-2836(79)90167-0. [DOI] [PubMed] [Google Scholar]
  31. Sogo J. M., Inciarte M. R., Corral J., Viñuela E., Salas M. RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage phi29. J Mol Biol. 1979 Feb 5;127(4):411–436. doi: 10.1016/0022-2836(79)90230-4. [DOI] [PubMed] [Google Scholar]
  32. Stallcup M. R., Rabinowitz J. C. Initiation of protein synthesis in vitro by a clostridial system. I. Specificity in the translation of natural messenger ribonucleic acids. J Biol Chem. 1973 May 10;248(9):3209–3215. [PubMed] [Google Scholar]
  33. Stallcup M. R., Rabinowitz J. C. Initiation of protein synthesis in vitro by a clostridial system. II. The roles of initiation factors and salt-washed ribosomes in determining specificity in the translation of natural messenger ribonucleic acids. J Biol Chem. 1973 May 10;248(9):3216–3219. [PubMed] [Google Scholar]
  34. Stallcup M. R., Sharrock W. J., Rabinowitz J. C. Ribsome and messenger specificity in protein synthesis by bacteria. Biochem Biophys Res Commun. 1974 May 7;58(1):92–98. doi: 10.1016/0006-291x(74)90895-x. [DOI] [PubMed] [Google Scholar]
  35. Stallcup M. R., Sharrock W. J., Rabinowitz J. C. Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reactions in vitro. J Biol Chem. 1976 Apr 25;251(8):2499–2510. [PubMed] [Google Scholar]
  36. Steitz J. A., Wahba A. J., Laughrea M., Moore P. B. Differential requirements for polypeptide chain initiation complex formation at the three bacteriophage R17 initiator regions. Nucleic Acids Res. 1977 Jan;4(1):1–15. doi: 10.1093/nar/4.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  38. Szer W., Leffler S. Interaction of Escherichia coli 30S ribosomal subunits with MS2 phage RNA in the absence of initiation factors. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3611–3615. doi: 10.1073/pnas.71.9.3611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tal M., Aviram M., Kanarek A., Weiss A. Polyuridylic acid binding and translating by Escherichia coli ribosomes: stimulation by protein I, inhibition by aurintricarboxylic acid. Biochim Biophys Acta. 1972 Oct 27;281(3):381–392. doi: 10.1016/0005-2787(72)90452-2. [DOI] [PubMed] [Google Scholar]
  40. Thummel C. S., Burgess T. L., Tjian R. Properties of simian virus 40 small t antigen overproduced in bacteria. J Virol. 1981 Feb;37(2):683–697. doi: 10.1128/jvi.37.2.683-697.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Van Dieijen G., Van Der Laken C. J., Van Knippenberg P. H., Van Duin J. Function of Escherichia coli ribosomal protein S1 in translation of natural and synthetic messenger RNA. J Mol Biol. 1975 Apr 15;93(3):351–366. doi: 10.1016/0022-2836(75)90282-x. [DOI] [PubMed] [Google Scholar]
  42. Vermeer C., van Alphen W., van Knippenberg P., Bosch L. Initiation factor-dependent binding of MS2 RNA to 30-S ribosomes and the recycling of IF-3. Eur J Biochem. 1973 Dec 3;40(1):295–308. doi: 10.1111/j.1432-1033.1973.tb03197.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES