Abstract
Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abelson J. RNA processing and the intervening sequence problem. Annu Rev Biochem. 1979;48:1035–1069. doi: 10.1146/annurev.bi.48.070179.005131. [DOI] [PubMed] [Google Scholar]
- Hall B. D., Clarkson S. G., Tocchini-Valentini G. Transcription initiation of eucaryotic transfer RNA genes. Cell. 1982 May;29(1):3–5. doi: 10.1016/0092-8674(82)90083-6. [DOI] [PubMed] [Google Scholar]
- Harada F., Ikawa Y. A new series of RNAs associated with the genome of spleen focus forming virus (SFFV) and poly(A)-containing RNA from SFFV-infected cells. Nucleic Acids Res. 1979 Oct 25;7(4):895–908. doi: 10.1093/nar/7.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada F., Kato N., Hoshino H. Series of 4.5S RNAs associated with poly(A)-containing RNAs of rodent cells. Nucleic Acids Res. 1979 Oct 25;7(4):909–917. doi: 10.1093/nar/7.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada F., Kato N., Nishimura S. The nucleotide sequence of nuclear 4.8S RNA of mouse cells. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1332–1340. doi: 10.1016/0006-291x(80)91620-4. [DOI] [PubMed] [Google Scholar]
- Harada F., Peters G. G., Dahlberg J. E. The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro. J Biol Chem. 1979 Nov 10;254(21):10979–10985. [PubMed] [Google Scholar]
- Kato N., Hoshino H., Harada F. Minor serine tRNA containing anticodon NCA (C4 RNA) from human and mouse cells. Biochem Int. 1983 Nov;7(5):635–645. [PubMed] [Google Scholar]
- Kato N., Hoshino H., Harada F. Nucleotide sequence of 4.5S RNA (C8 or hY5) from HeLa cells. Biochem Biophys Res Commun. 1982 Sep 16;108(1):363–370. doi: 10.1016/0006-291x(82)91875-7. [DOI] [PubMed] [Google Scholar]
- Muramatsu M. Preparation of RNA from animal cells. Methods Cell Biol. 1973;7:23–51. doi: 10.1016/s0091-679x(08)61770-7. [DOI] [PubMed] [Google Scholar]
- Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
- Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piper P. W. The nucleotide sequence of a methionine tRNA which functions in protein elongation in mouse myeloma cells. Eur J Biochem. 1975 Feb 3;51(1):283–293. doi: 10.1111/j.1432-1033.1975.tb03928.x. [DOI] [PubMed] [Google Scholar]
- Randerath E., Gupta R. C., Morris H. P., Randerath K. Isolation and sequence analysis of two major leucine transfer ribonucleic acids (anticodon Mm-A-A) from a rat tumor, Morris hepatoma 5123D. Biochemistry. 1980 Jul 22;19(15):3476–3483. doi: 10.1021/bi00556a011. [DOI] [PubMed] [Google Scholar]
- Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]