Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1970 Jun;49(6):1200–1212. doi: 10.1172/JCI106334

Fluid reabsorption in Henle's loop and urinary excretion of sodium and water in normal rats and rats with chronic hypertension

Klaus O Stumpe 1, Hans D Lowitz 1, Bruno Ochwadt 1
PMCID: PMC322586  PMID: 5422022

Abstract

The function of the short loops of Henle was investigated by micropuncture technique in normal rats, in rats with spontaneous hypertension, and in the untouched kidney of rats with experimental renal hypertension. All animals received a standard infusion of 1.2 ml of isotonic saline per hr.

With increasing arterial blood pressure (range from 90 to 220 mm Hg), a continuous decrease in transit time of Lissamine green through Henle's loop from 32 to 10 sec was observed. Fractional water reabsorption along the loop declined progressively from 26 to 10%, and fractional sodium reabsorption decreased from 40 to 36% of the filtered load. The fluid volume in Henle's loop calculated from transit time and mean flow rate also decreased with increasing blood pressure. There was no change in superficial single nephron filtration rate but there was a slight increase in total glomerular filtration rate (GFR). Sodium and water reabsorption in the proximal tubule remained unchanged.

Urine flow rate, sodium excretion, osmolar clearance, and negative free water clearance increased with increasing blood pressure. The osmolal urine to plasma (U/P) ratio declined but did not fall below a value of 1.5. It is concluded that the increase in sodium and water excretion with chronic elevation of arterial blood pressure is caused by a decrease of sodium and water reabsorption along the loop of Henle, presumably as a consequence of increased medullary blood pressure.

Full text

PDF
1204

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRCHALL R., TUTHILL S. W., JACOBS W. S., TRAUTMAN W. J., Jr, FINDLEY T. Renal excretion of water, sodium and chloride; comparison of the responses of hypertensive patients with those of normal subjects, patients with specific adrenal or pituitary defects, and a normal subject primed with various hormones. Circulation. 1953 Feb;7(2):258–267. doi: 10.1161/01.cir.7.2.258. [DOI] [PubMed] [Google Scholar]
  2. BOTT P. A. Renal excretion of creatinine in Necturus; a reinvestigation by direct analysis of glomerular and tubule fluid for creatinine and inulin. Am J Physiol. 1952 Jan;168(1):107–113. doi: 10.1152/ajplegacy.1951.168.1.107. [DOI] [PubMed] [Google Scholar]
  3. COTTIER P. T., WELLER J. M., HOOBLER S. W. Effect of an intravenous sodium chloride load on renal hemodynamics and electrolyte excretion in essential hypertension. Circulation. 1958 Apr;17(4 Pt 2):750–760. doi: 10.1161/01.cir.17.4.750. [DOI] [PubMed] [Google Scholar]
  4. COTTIER P. T., WELLER J. M., HOOBLER S. W. Sodium chloride excretion following salt loading in hypertensive subjects. Circulation. 1958 Aug;18(2):196–205. doi: 10.1161/01.cir.18.2.196. [DOI] [PubMed] [Google Scholar]
  5. Earley L. E., Friedler R. M. The effects of combined renal vasodilatation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium. J Clin Invest. 1966 Apr;45(4):542–551. doi: 10.1172/JCI105368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Earley L. E., Martino J. A., Friedler R. M. Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest. 1966 Nov;45(11):1668–1684. doi: 10.1172/JCI105474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FLANIGAN W. J., OKEN D. E. RENAL MICROPUNCTURE STUDY OF THE DEVELOPMENT OF ANURIA IN THE RAT WITH MERCURY-INDUCED ACUTE RENAL FAILURE. J Clin Invest. 1965 Mar;44:449–457. doi: 10.1172/JCI105158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GIEBISCH G., KLOSE R. M., WINDHAGER E. E. MICROPUNCTURE STUDY OF HYPERTONIC SODIUM CHLORIDE LOADING IN THE RAT. Am J Physiol. 1964 Apr;206:687–693. doi: 10.1152/ajplegacy.1964.206.4.687. [DOI] [PubMed] [Google Scholar]
  9. GLABMAN S., AYNEDJIAN H. S., BANK N. MICROPUNCTURE STUDY OF THE EFFECT OF ACUTE REDUCTIONS IN GLOMERULAR FILTRATION RATE ON SODIUM AND WATER REABSORPTION BY THE PROXIMAL TUBULES OF THE RAT. J Clin Invest. 1965 Aug;44:1410–1416. doi: 10.1172/JCI105246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am J Physiol. 1957 May;189(2):323–328. doi: 10.1152/ajplegacy.1957.189.2.323. [DOI] [PubMed] [Google Scholar]
  11. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956 May;185(2):430–439. doi: 10.1152/ajplegacy.1956.185.2.430. [DOI] [PubMed] [Google Scholar]
  12. GREEN D. M., WEDELL H. G., WALD M. H., LEARNED B. The relation of water and sodium excretion in blood pressure in human subjects. Circulation. 1952 Dec;6(6):919–924. doi: 10.1161/01.cir.6.6.919. [DOI] [PubMed] [Google Scholar]
  13. Gertz K. H., Mangos J. A., Braun G., Pagel H. D. On the glomerular tubular balance in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):360–372. doi: 10.1007/BF00363236. [DOI] [PubMed] [Google Scholar]
  14. Girndt J., Ochwadt B. Durchblutung des Nierenmarkes, Gesamtnierendurchblutung und cortico-medulläre Gradienten beim experimentellen renalen Hochdruck der Ratte. Pflugers Arch. 1969;313(1):30–42. doi: 10.1007/BF00586326. [DOI] [PubMed] [Google Scholar]
  15. Horster M., Thurau K. Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):162–181. doi: 10.1007/BF00362733. [DOI] [PubMed] [Google Scholar]
  16. Koch K. M., Aynedjian H. S., Bank N. Effect of acute hypertension on sodium reabsorption by the proximal tubule. J Clin Invest. 1968 Jul;47(7):1696–1709. doi: 10.1172/JCI105860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lewy J. E., Windhager E. E. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968 May;214(5):943–954. doi: 10.1152/ajplegacy.1968.214.5.943. [DOI] [PubMed] [Google Scholar]
  18. Liebau G., Levine D. Z., Thurau K. Micropuncture studies on the dog kidney. I. The response of the proximal tubule to changes in systemic blood pressure within and below the autoregulatory range. Pflugers Arch. 1968;304(1):57–68. doi: 10.1007/BF00586718. [DOI] [PubMed] [Google Scholar]
  19. Lowitz H. D., Stumpe K. O., Ochwadt B. Natrium- und Wasserresorption in den verschiedenen Abschnitten des Nephrons beim experimentellen renalen Hochdruck der Ratte. Pflugers Arch. 1968;304(4):322–335. doi: 10.1007/BF00587708. [DOI] [PubMed] [Google Scholar]
  20. MOFFAT D. B., FOURMAN J. THE VASCULAR PATTERN OF THE RAT KIDNEY. J Anat. 1963 Oct;97:543–553. [PMC free article] [PubMed] [Google Scholar]
  21. Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
  22. Morgan T., Berliner R. W. A study by continuous microperfusion of water and electrolyte movements in the loop of Henle and distal tubule of the rat. Nephron. 1969;6(3):388–405. doi: 10.1159/000179741. [DOI] [PubMed] [Google Scholar]
  23. Oken D. E., Arce M. L., Wilson D. R. Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J Clin Invest. 1966 May;45(5):724–735. doi: 10.1172/JCI105387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. PAPPER S., BELSKY J. L., BLEIFER K. H. The response to the administration of an isotonic sodium chloride-lactate solution in patients with essential hypertension. J Clin Invest. 1960 Jun;39:876–884. doi: 10.1172/JCI104108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SELKURT E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation. 1951 Oct;4(4):541–551. doi: 10.1161/01.cir.4.4.541. [DOI] [PubMed] [Google Scholar]
  26. SELKURT E. E., WOMACK I., DAILEY W. N. MECHANISM OF NATRIURESIS AND DIURESIS DURING ELEVATED RENAL ARTERIAL PRESSURE. Am J Physiol. 1965 Jul;209:95–99. doi: 10.1152/ajplegacy.1965.209.1.95. [DOI] [PubMed] [Google Scholar]
  27. Schnermann J., Valtin H., Thurau K., Nagel W., Horster M., Fischbach H., Wahl M., Liebau G. Micropuncture studies on the influence of antidiuretic hormone on tubular fluid reabsorption in rats with hereditary diabetes insipidus. Pflugers Arch. 1969;306(2):103–118. doi: 10.1007/BF00586878. [DOI] [PubMed] [Google Scholar]
  28. Stumpe K. O., Lowitz H. D., Ochwadt B. Function of juxtamedullary nephrons in normotensive and chronically hypertensive rats. Pflugers Arch. 1969;313(1):43–52. doi: 10.1007/BF00586327. [DOI] [PubMed] [Google Scholar]
  29. Stumpe K. O., Lowitz H. D., Ochwadt B. Mikropunktionsuntersuchung am distalen Tubulus beim Goldblatt-Hochdruck der Ratte. Pflugers Arch. 1968;304(4):336–350. doi: 10.1007/BF00587709. [DOI] [PubMed] [Google Scholar]
  30. Stumpe K. O., Ochwadt B. Wirkung von Aldosteron auf die Natrium-und Wasserresorption im proximalen Tubulus bei chronischer Kochsalzbelastung. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968 Apr 23;300(3):148–160. [PubMed] [Google Scholar]
  31. THOMPSON J. E., SILVA T. F., KINSEY D., SMITHWICK R. H. The effect of acute salt loads on the urinary sodium output of normotensive and hypertensive patients before and after surgery. Circulation. 1954 Dec;10(6):912–919. doi: 10.1161/01.cir.10.6.912. [DOI] [PubMed] [Google Scholar]
  32. THURAU K., DEETJEN P., KRAMER K. [Hemodynamics of kidney medullary substance. Part II. Interrelationships between the vascular and tubular counter-flow system in arterial pressure increases, water diuresis and osmotic diuresis]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:270–285. [PubMed] [Google Scholar]
  33. THURAU K., DEETJEN P. [Diuresis in arterial pressure increases. Importance of hemodynamics of the renal medulla for urine concentration. With a theoretical contribution concerning H. Guenzler: "Counterflow systems with administration of substance through the external wall"]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;274:567–580. [PubMed] [Google Scholar]
  34. TOBIAN L., COFFEE K., FERREIRA D., MEULI J. THE EFFECT OF RENAL PERFUSION PRESSURE ON THE NET TRANSPORT OF SODIUM OUT OF DISTAL TUBULAR URINE AS STUDIED WITH THE STOP-FLOW TECHNIQUE. J Clin Invest. 1964 Jan;43:118–128. doi: 10.1172/JCI104886. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES