Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(8):2624–2627. doi: 10.1073/pnas.83.8.2624

Therapy with monoclonal antibody to interleukin 2 receptor spares suppressor T cells and prevents or reverses acute allograft rejection in rats.

J W Kupiec-Weglinski, T Diamantstein, N L Tilney, T B Strom
PMCID: PMC323351  PMID: 2939456

Abstract

The mouse hybridoma ART 18 monoclonal antibody (mAb), which binds to the rat interleukin 2 (IL-2) receptor, was studied for its effect on heterotopic cardiac allograft survival in two histoincompatible inbred rat strain combinations. Treatment with ART 18 mAb for 10 days after transplantation prolonged allograft survival in a dose-dependent fashion up to about 3 weeks (acute rejection normally occurs within 8 days). ART 18 mAb therapy started at 5 days after transplantation the time of major rejection activity) abrogated acute rejection and extended the survival to about 18 days. The dense cellular infiltrate noted histologically in acute rejection had virtually disappeared after ART 18 mAb treatment. Thus, IL-2 receptor-targeted therapy can be successfully used to prevent and/or treat acute rejection. When spleen cells from antibody-treated recipients bearing well-functioning allografts were adoptively transferred to normal untreated rats that received cardiac allografts 24 hr later, the survival of donor-specific, but not third-party, test cardiac allografts was prolonged significantly; this supports the idea that ART 18 mAb induced "sparing" of suppressor T lymphocytes. Combining infusion of ART 18 mAb with exogenous IL-2-rich conditioned medium produced the same effect as if the mAb alone had been administered, suggesting that an excess of IL-2 does not prevent binding of ART 18 mAb to IL-2 receptor-bearing cells in vivo. These results support the important role of the IL-2 receptor-bearing cells in the mechanism of allograft rejection; they may represent an important target for immunosuppression in clinical organ transplantation.

Full text

PDF
2624

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantrell D. A., Smith K. A. The interleukin-2 T-cell system: a new cell growth model. Science. 1984 Jun 22;224(4655):1312–1316. doi: 10.1126/science.6427923. [DOI] [PubMed] [Google Scholar]
  2. Coutinho A., Larsson E. L., Grönvik K. O., Andersson J. Studies on T lymphocyte activation II. The target cells for concanavalin A-induced growth factors. Eur J Immunol. 1979 Aug;9(8):587–592. doi: 10.1002/eji.1830090803. [DOI] [PubMed] [Google Scholar]
  3. Dallman M. J., Mason D. W. Role of thymus-derived and thymus-independent cells in murine skin allograft rejection. Transplantation. 1982 Mar;33(3):221–223. doi: 10.1097/00007890-198203000-00002. [DOI] [PubMed] [Google Scholar]
  4. Depper J. M., Leonard W. J., Robb R. J., Waldmann T. A., Greene W. C. Blockade of the interleukin-2 receptor by anti-Tac antibody: inhibition of human lymphocyte activation. J Immunol. 1983 Aug;131(2):690–696. [PubMed] [Google Scholar]
  5. Hall B. M. Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell. J Exp Med. 1985 Jan 1;161(1):123–133. doi: 10.1084/jem.161.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Helderman J. H., Strom T. B. Role of protein and RNA synthesis in the development of insulin binding sites on activated thymus-derived lymphocytes. J Biol Chem. 1979 Aug 10;254(15):7203–7207. [PubMed] [Google Scholar]
  7. Kasai M., Yoneda T., Habu S., Maruyama Y., Okumura K., Tokunaga T. In vivo effect of anti-asialo GM1 antibody on natural killer activity. Nature. 1981 May 28;291(5813):334–335. doi: 10.1038/291334a0. [DOI] [PubMed] [Google Scholar]
  8. Kirkman R. L., Barrett L. V., Gaulton G. N., Kelley V. E., Ythier A., Strom T. B. Administration of an anti-interleukin 2 receptor monoclonal antibody prolongs cardiac allograft survival in mice. J Exp Med. 1985 Jul 1;162(1):358–362. doi: 10.1084/jem.162.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kupiec-Weglinski J. W., Araujo J. L., Towpik E., Araneda D., Tilney N. L. Host-graft relationship: the systemic nature of allograft rejection. Surgery. 1985 Aug;98(2):259–266. [PubMed] [Google Scholar]
  10. Kupiec-Weglinski J. W., Lear P. A., Heidecke C. D., Araneda D., Tilney N. L. Restoration of allograft responsiveness in B rats. IV. The divergent migratory behavior of lymphocyte populations mediating cardiac allograft rejection. Cell Immunol. 1984 May;85(2):459–476. doi: 10.1016/0008-8749(84)90259-4. [DOI] [PubMed] [Google Scholar]
  11. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  12. Lancaster F., Chui Y. L., Batchelor J. R. Anti-idiotypic T cells suppress rejection of renal allografts in rats. Nature. 1985 May 23;315(6017):336–337. doi: 10.1038/315336a0. [DOI] [PubMed] [Google Scholar]
  13. Lear P. A., Heidecke C. D., Kupiec-Weglinski J. W., Araneda D., Strom T. B., Tilney N. L. Restoration of allograft responsiveness in B rats. II. Requirements for lymphoid populations and lymphokine. Transplantation. 1983 Oct;36(4):412–417. doi: 10.1097/00007890-198310000-00012. [DOI] [PubMed] [Google Scholar]
  14. Lemke H., Hammerling G. J., Hohmann C., Rajewsky K. Hybrid cell lines secreting monoclonal antibody specific for major histocompatibility antigens of the mouse. Nature. 1978 Jan 19;271(5642):249–251. doi: 10.1038/271249a0. [DOI] [PubMed] [Google Scholar]
  15. Malek T. R., Ortega G., Jakway J. P., Chan C., Shevach E. M. The murine IL 2 receptor. II. Monoclonal anti-IL 2 receptor antibodies as specific inhibitors of T cell function in vitro. J Immunol. 1984 Oct;133(4):1976–1982. [PubMed] [Google Scholar]
  16. Malek T. R., Robb R. J., Shevach E. M. Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5694–5698. doi: 10.1073/pnas.80.18.5694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marquet R. L., Heystek G. A. Induction of suppressor cells by donor-specific blood transfusions and heart transplantation in rats. Transplantation. 1981 Apr;31(4):272–274. doi: 10.1097/00007890-198104000-00008. [DOI] [PubMed] [Google Scholar]
  18. Ono K., Lindsey E. S. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969 Feb;57(2):225–229. [PubMed] [Google Scholar]
  19. Osawa H., Diamantstein T. Partial characterization of the putative rat interleukin 2 receptor. Eur J Immunol. 1984 Apr;14(4):374–376. doi: 10.1002/eji.1830140418. [DOI] [PubMed] [Google Scholar]
  20. Osawa H., Diamantstein T. Studies on T lymphocyte activation. II. Monoclonal antibody inhibiting the capacity of rat T lymphoblasts to absorb and to respond to IL-2: an anti-IL-2 receptor antibody? Immunology. 1983 Mar;48(3):617–621. [PMC free article] [PubMed] [Google Scholar]
  21. Osawa H., Diamantstein T. The characteristics of a monoclonal antibody that binds specifically to rat T lymphoblasts and inhibits IL 2 receptor functions. J Immunol. 1983 Jan;130(1):51–55. [PubMed] [Google Scholar]
  22. Robb R. J., Munck A., Smith K. A. T cell growth factor receptors. Quantitation, specificity, and biological relevance. J Exp Med. 1981 Nov 1;154(5):1455–1474. doi: 10.1084/jem.154.5.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenthal J. T., Hakala T. R., Iwatsuki S., Shaw B. W., Jr, Starzl T. E. Cadaveric renal transplantation under cyclosporine-steroid therapy. Surg Gynecol Obstet. 1983 Oct;157(4):309–315. [PMC free article] [PubMed] [Google Scholar]
  24. Smith K. A., Gillis S., Baker P. E., McKenzie D., Ruscetti F. W. T-cell growth factor-mediated T-cell proliferation. Ann N Y Acad Sci. 1979;332:423–432. doi: 10.1111/j.1749-6632.1979.tb47136.x. [DOI] [PubMed] [Google Scholar]
  25. Tilney N. L., Kupiec-Weglinski J. W., Heidecke C. D., Lear P. A., Strom T. B. Mechanisms of rejection and prolongation of vascularized organ allografts. Immunol Rev. 1984;77:185–216. doi: 10.1111/j.1600-065x.1984.tb00722.x. [DOI] [PubMed] [Google Scholar]
  26. Tilney N. L., Milford E. L., Araujo J. L., Strom T. B., Carpenter C. B., Kirkman R. L. Experience with cyclosporine and steroids in clinical renal transplantation. Ann Surg. 1984 Nov;200(5):605–613. doi: 10.1097/00000658-198411000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Trowbridge I. S., Omary M. B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci U S A. 1981 May;78(5):3039–3043. doi: 10.1073/pnas.78.5.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsudo M., Uchiyama T., Uchino H. Expression of Tac antigen on activated normal human B cells. J Exp Med. 1984 Aug 1;160(2):612–617. doi: 10.1084/jem.160.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES