Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 May;83(10):3366–3370. doi: 10.1073/pnas.83.10.3366

Photoreactivation rescue and hypermutability of ultraviolet-irradiated excisionless Drosophila melanogaster larvae

Haruko Ryo 1, Sohei Kondo 1,*
PMCID: PMC323514  PMID: 3085088

Abstract

There is accumulating evidence suggesting that expression of genes for repair of UV damage to DNA in mammals and fish is regulated developmentally. Therefore, the activity of excision repair and photoreactivation in vivo in young larvae of Drosophila melanogaster was examined in a strain carrying the mutation mus201 that was unable to carry out excision repair. The photoreactivation activity in first-instar larvae was so high that UV-induced lethality in excision-less larvae was almost completely rescued by posttreatment with fluorescent light. Excision repair activity in first-instar repair-proficient larvae was so high that UV irradiation was scarcely able to produce somatic eye-color mutations. In contrast, excisionless larvae showed a high incidence of somatic eye-color mutation after UV-irradiation, and this incidence was reduced to the spontaneous level by posttreatment with fluorescent light. Incorporation of a postreplication repair-defective mutation into the excisionless strain decreased the incidence of UV-induced somatic mutations by a factor of 3. The analogous repair dependence of UV mutagenesis in Drosophila and Escherichia coli is discussed. It is proposed that UV-induced somatic mutations in excisionless Drosophila larvae are caused primarily by pyrimidine dimers and that a constitutive, error-prone pathway for filling daughter-strand gaps opposite dimers is, at least partly, responsible for the fixation of mutations.

Keywords: repair-dependent mutation, error-prone postreplication repair, excision repair, target size for mutation, somatic mutagenesis

Full text

PDF
3369

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenburg L S, Altenburg E. The Lowering of the Mutagenic Effectiveness of Ultraviolet by Photoreactivating Light in Drosophila. Genetics. 1952 Sep;37(5):545–553. doi: 10.1093/genetics/37.5.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananthaswamy H. N., Fisher M. S. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin. Cancer Res. 1981 May;41(5):1829–1833. [PubMed] [Google Scholar]
  3. BROWNING L. S., ALTENBURG E. The proportionality between mutation rate and ultraviolet dose after photoreactivation in Drosophila. Genetics. 1962 Mar;47:361–366. doi: 10.1093/genetics/47.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker B. S., Carpenter A. T., Ripoll P. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER. Genetics. 1978 Nov;90(3):531–578. doi: 10.1093/genetics/90.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowman J. T. Parameters of spontaneous and x-ray-induced reversion of the white-ivory mutant of Drosophila. Mutat Res. 1969 May-Jun;7(3):409–415. doi: 10.1016/0027-5107(69)90111-0. [DOI] [PubMed] [Google Scholar]
  6. Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyd J. B., Setlow R. B. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster. Genetics. 1976 Nov;84(3):507–526. doi: 10.1093/genetics/84.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boyd J. B., Snyder R. D., Harris P. V., Presley J. M., Boyd S. F., Smith P. D. Identification of a second locus in Drosophila melanogaster required for excision repair. Genetics. 1982 Feb;100(2):239–257. doi: 10.1093/genetics/100.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bridges B. A., Dennis R. E., Munson R. J. Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics. 1967 Dec;57(4):897–908. doi: 10.1093/genetics/57.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown T. C., Harris P. V., Boyd J. B. Effects of radiation on the survival of excision-defective cells from Drosophila melanogaster. Somatic Cell Genet. 1981 Nov;7(6):631–644. doi: 10.1007/BF01538753. [DOI] [PubMed] [Google Scholar]
  11. D'Ambrosio S. M., Slazinski L., Whetstone J. W., Lowney E. Excision repair of UV-induced pyrimidine dimers in human skin in vivo. J Invest Dermatol. 1981 Sep;77(3):311–313. doi: 10.1111/1523-1747.ep12482484. [DOI] [PubMed] [Google Scholar]
  12. D'Ambrosio S. M., Whetstone J. W., Slazinski L., Lowney E. Photorepair of pyrimidine dimers in human skin in vivo. Photochem Photobiol. 1981 Oct;34(4):461–464. [PubMed] [Google Scholar]
  13. GREEN M. M. Back mutation in Drosophila melanogaster. II. Data on additional yellow and white mutants. Genetics. 1962 Apr;47:483–488. doi: 10.1093/genetics/47.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
  15. Ishikawa T., Kodama K., Ide F., Takayama S. Demonstration of in vivo DNA repair synthesis in mouse skin exposed to various chemical carcinogens. Cancer Res. 1982 Dec;42(12):5216–5221. [PubMed] [Google Scholar]
  16. Karess R. E., Rubin G. M. A small tandem duplication is responsible for the unstable white-ivory mutation in Drosophila. Cell. 1982 Aug;30(1):63–69. doi: 10.1016/0092-8674(82)90012-5. [DOI] [PubMed] [Google Scholar]
  17. Kelner A. Effect of Visible Light on the Recovery of Streptomyces Griseus Conidia from Ultra-violet Irradiation Injury. Proc Natl Acad Sci U S A. 1949 Feb;35(2):73–79. doi: 10.1073/pnas.35.2.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kodama K., Ishikawa T., Takayama S. Dose response, wavelength dependence, and time course of ultraviolet radiation-induced unscheduled DNA synthesis in mouse skin in vivo. Cancer Res. 1984 May;44(5):2150–2154. [PubMed] [Google Scholar]
  19. Kondo S., Ichikawa H., Iwo K., Kato T. Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities. Genetics. 1970 Oct;66(2):187–217. doi: 10.1093/genetics/66.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mano Y., Kator K., Egami N. Photoreactivation and excision repair of thymine dimers in ultraviolet-irradiated cultured fish cells. Radiat Res. 1982 Jun;90(3):501–508. [PubMed] [Google Scholar]
  21. Rasmuson B., Westerberg B. M., Rasmuson A., Gvozdev V. A., Belyaeva E. S., Ilyin Y. V. Transpositions, mutable genes, and the dispersed gene family Dm225 in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):545–551. doi: 10.1101/sqb.1981.045.01.070. [DOI] [PubMed] [Google Scholar]
  22. Ryo H., Yoo M. A., Fujikawa K., Kondo S. Comparison of somatic reversions between the ivory allele and transposon-caused mutant alleles at the white locus of Drosophila melanogaster after larval treatment with X rays and ethyl methanesulfonate. Genetics. 1985 Jul;110(3):441–451. doi: 10.1093/genetics/110.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SETLOW R. B., SETLOW J. K. Evidence that ultraviolet-induced thymine dimers in DNA cause biological damage. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1250–1257. doi: 10.1073/pnas.48.7.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sawada S., Okada S. Effects of BUdR-labelling on radiation-induced DNA breakage and subsequent rejoining in cultured mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Jun;21(6):599–602. doi: 10.1080/09553007214550691. [DOI] [PubMed] [Google Scholar]
  25. Setlow R. B. Cyclobutane-type pyrimidine dimers in polynucleotides. Science. 1966 Jul 22;153(3734):379–386. doi: 10.1126/science.153.3734.379. [DOI] [PubMed] [Google Scholar]
  26. Sutherland B. M., Blackett A. D., Feng N. I., Freeman S. E., Ogut E. S., Gange R. W., Sutherland J. C. Photoreactivation and other ultraviolet/visible light effects on DNA in human skin. Ann N Y Acad Sci. 1985;453:73–79. doi: 10.1111/j.1749-6632.1985.tb11799.x. [DOI] [PubMed] [Google Scholar]
  27. Sutherland B. M., Harber L. C., Kochevar I. E. Pyrimidine dimer formation and repair in human skin. Cancer Res. 1980 Sep;40(9):3181–3185. [PubMed] [Google Scholar]
  28. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Witkin E. M. The mutability toward ultraviolet light of recombination-deficient strains of Escherichia coli. Mutat Res. 1969 Jul-Aug;8(1):9–14. doi: 10.1016/0027-5107(69)90135-3. [DOI] [PubMed] [Google Scholar]
  30. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES