Abstract
We have developed a recombinant DNA shuttle vector that permits the molecular analysis of mutations induced in human cells by chemical or physical mutagens. The vector is able to replicate as a plasmid in Escherichia coli and in Epstein-Barr virus (EBV)-transformed human lymphoblastoid cell lines and contains the herpes simplex virus type 1 thymidine kinase gene (HSV tk) as the target for mutagenesis studies. After introduction of the vector into an EBV-transformed lymphoblastoid cell line (LCL-721) by electroporation, approximately equal to 2% of the transfected cells expressed the vector-encoded gene for hygromycin resistance. Plasmid DNA isolated from cells immediately after selection for hygromycin resistance (10 population doublings posttransfection) contained mutations in the HSV tk gene at a frequency of 6 X 10(-5). Treatment of plasmid-bearing LCL-721 cells with N-ethyl-N-nitrosourea resulted in a dose-dependent increase of up to 15-fold in the frequency of mutations in the HSV tk gene. The dose-response for the induction of mutations in the plasmid-encoded gene closely paralleled that for the induction of mutations in the cellular gene for hypoxanthine (guanine) phosphoribosyltransferase.
Full text
PDF![3402](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b613/323522/420eae5e4650/pnas00314-0361.png)
![3403](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b613/323522/5d22336b8c1f/pnas00314-0362.png)
![3404](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b613/323522/e75fa22fc7ea/pnas00314-0363.png)
![3405](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b613/323522/b233f9e5f141/pnas00314-0364.png)
![3406](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b613/323522/0051e1d5d95e/pnas00314-0365.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashman C. R., Davidson R. L. High spontaneous mutation frequency in shuttle vector sequences recovered from mammalian cellular DNA. Mol Cell Biol. 1984 Nov;4(11):2266–2272. doi: 10.1128/mcb.4.11.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aust A. E., Drinkwater N. R., Debien K., Maher V. M., McCormick J. J. Comparison of the frequency of diphtheria toxin and thioguanine resistance induced by a series of carcinogens to analyze their mutational specificities in diploid human fibroblasts. Mutat Res. 1984 Jan;125(1):95–104. doi: 10.1016/0027-5107(84)90036-8. [DOI] [PubMed] [Google Scholar]
- Blochlinger K., Diggelmann H. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol. 1984 Dec;4(12):2929–2931. doi: 10.1128/mcb.4.12.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calos M. P., Lebkowski J. S., Botchan M. R. High mutation frequency in DNA transfected into mammalian cells. Proc Natl Acad Sci U S A. 1983 May;80(10):3015–3019. doi: 10.1073/pnas.80.10.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarti S., Joffe S., Seidman M. M. Recombination and deletion of sequences in shuttle vector plasmids in mammalian cells. Mol Cell Biol. 1985 Sep;5(9):2265–2271. doi: 10.1128/mcb.5.9.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drinkwater N. R., Corner R. C., McCormick J. J., Maher V. M. An in situ assay for induced diphtheria-toxin-resistant mutants of diploid human fibroblasts. Mutat Res. 1982 Dec;106(2):277–289. doi: 10.1016/0027-5107(82)90109-9. [DOI] [PubMed] [Google Scholar]
- Garner R. C., Pickering C., Martin C. N. Mutagenicity of methyl-, ethyl-, propyl- and butylnitrosourea towards Escherichia coli WP2 strains with varying DNA repair capabilities. Chem Biol Interact. 1979 Jul;26(2):197–205. doi: 10.1016/0009-2797(79)90023-1. [DOI] [PubMed] [Google Scholar]
- Griffin B. E., Björck E., Bjursell G., Lindahl T. Sequence complexity of circular Epstein-Bar virus DNA in transformed cells. J Virol. 1981 Oct;40(1):11–19. doi: 10.1128/jvi.40.1.11-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampar B., Tanaka A., Nonoyama M., Derge J. G. Replication of the resident repressed Epstein-Barr virus genome during the early S phase (S-1 period) of nonproducer Raji cells. Proc Natl Acad Sci U S A. 1974 Mar;71(3):631–633. doi: 10.1073/pnas.71.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Kavathas P., Bach F. H., DeMars R. Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4251–4255. doi: 10.1073/pnas.77.7.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kit S., Otsuka H., Qavi H., Kit M. Functional expression of the Herpes simplex virus thymidine kinase gene in Escherichia coli K-12. Gene. 1981 Dec;16(1-3):287–295. doi: 10.1016/0378-1119(81)90084-6. [DOI] [PubMed] [Google Scholar]
- Lebkowski J. S., Clancy S., Miller J. H., Calos M. P. The lacI shuttle: rapid analysis of the mutagenic specificity of ultraviolet light in human cells. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8606–8610. doi: 10.1073/pnas.82.24.8606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebkowski J. S., DuBridge R. B., Antell E. A., Greisen K. S., Calos M. P. Transfected DNA is mutated in monkey, mouse, and human cells. Mol Cell Biol. 1984 Oct;4(10):1951–1960. doi: 10.1128/mcb.4.10.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. H., Lebkowski J. S., Greisen K. S., Calos M. P. Specificity of mutations induced in transfected DNA by mammalian cells. EMBO J. 1984 Dec 20;3(13):3117–3121. doi: 10.1002/j.1460-2075.1984.tb02267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Razzaque A., Chakrabarti S., Joffee S., Seidman M. Mutagenesis of a shuttle vector plasmid in mammalian cells. Mol Cell Biol. 1984 Mar;4(3):435–441. doi: 10.1128/mcb.4.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Razzaque A., Mizusawa H., Seidman M. M. Rearrangement and mutagenesis of a shuttle vector plasmid after passage in mammalian cells. Proc Natl Acad Sci U S A. 1983 May;80(10):3010–3014. doi: 10.1073/pnas.80.10.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reisman D., Yates J., Sugden B. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol. 1985 Aug;5(8):1822–1832. doi: 10.1128/mcb.5.8.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Sugden B., Marsh K., Yates J. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol. 1985 Feb;5(2):410–413. doi: 10.1128/mcb.5.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thilly W. G., Deluca J. G., Hoppe H., 4th, Penman B. W. Phenotypic lag and mutation to 6-thioguanine resistance in diploid human lymphoblasts. Mutat Res. 1978 Apr;50(1):137–144. doi: 10.1016/0027-5107(78)90068-4. [DOI] [PubMed] [Google Scholar]
- Yates J., Warren N., Reisman D., Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3806–3810. doi: 10.1073/pnas.81.12.3806. [DOI] [PMC free article] [PubMed] [Google Scholar]