Abstract
The effects of ethanol on Cl- uptake were studied using a cell-free subcellular preparation from brain that contains a gamma-aminobutyric acid (GABA)/barbiturate receptor-sensitive Cl- transport system. In isolated vesicles prepared from rat cerebral cortex, ethanol, at concentrations that are present during acute intoxication (20-50 mM), stimulated 36Cl- uptake in a concentration-dependent and biphasic manner. The ethanol-stimulated uptake of 36Cl- was markedly inhibited by the GABA antagonists picrotoxin and bicuculline but not by a variety of other neurotransmitter receptor antagonists. The effects of ethanol in stimulating 36Cl- uptake in isolated brain vesicles were qualitatively and quantitatively similar to that of pentobarbital. Ethanol also markedly potentiated both muscimol- and pentobarbital-stimulated 36Cl- uptake at concentrations below those that directly stimulate 36Cl- uptake. Under our incubation conditions, ethanol did not release GABA, suggesting that it interacts with the postsynaptic GABA/barbiturate receptor complex. The ability of ethanol to stimulate GABA/barbiturate receptor-mediated Cl- transport may explain many of its pharmacological properties and provides a mechanism for the common psychopharmacological actions of ethanol, barbiturates, and benzodiazepines.
Full text
PDF![4071](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb7/323668/c11da3f1561f/pnas00315-0512.png)
![4072](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb7/323668/0e85aa47932a/pnas00315-0513.png)
![4073](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb7/323668/41469dbee5d5/pnas00315-0514.png)
![4074](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb7/323668/2cfa542cefdd/pnas00315-0515.png)
![4075](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb7/323668/ed76eb5d21ce/pnas00315-0516.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BELLEVILLE R. E., FRASER H. F. Tolerance to some effects of barbiturates. J Pharmacol Exp Ther. 1957 Aug;120(4):469–474. [PubMed] [Google Scholar]
- Barker J. L., Ransom B. R. Amino acid pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:331–354. doi: 10.1113/jphysiol.1978.sp012387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. L., Ransom B. R. Pentobarbitone pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:355–372. doi: 10.1113/jphysiol.1978.sp012388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin J. H., Goldstein D. B. Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol Pharmacol. 1977 May;13(3):435–441. [PubMed] [Google Scholar]
- Costa E., Guidotti A., Mao C. C., Suria A. New concepts on the mechanism of action of benzodiazepines. Life Sci. 1975 Jul 15;17(2):167–185. doi: 10.1016/0024-3205(75)90501-9. [DOI] [PubMed] [Google Scholar]
- Cott J., Carlsson A., Engel J., Lindqvist M. Suppression of ethanol-induced locomotor stimulation by GABA-like drugs. Naunyn Schmiedebergs Arch Pharmacol. 1976 Dec;295(3):203–209. doi: 10.1007/BF00505087. [DOI] [PubMed] [Google Scholar]
- Davidoff R. A. Alcohol and presynaptic inhibition in an isolated spinal cord preparation. Arch Neurol. 1973 Jan;28(1):60–63. doi: 10.1001/archneur.1973.00490190078011. [DOI] [PubMed] [Google Scholar]
- Davis W. C., Ticku M. K. Ethanol enhances [3H]diazepam binding at the benzodiazepine-gamma-aminobutyric acid receptor-ionophore complex. Mol Pharmacol. 1981 Sep;20(2):287–294. [PubMed] [Google Scholar]
- Goldstein D. B. Alcohol withdrawal reactions in mice: effects of drugs that modify neurotransmission. J Pharmacol Exp Ther. 1973 Jul;186(1):1–9. [PubMed] [Google Scholar]
- Goldstein D. B., Chin J. H. Interaction of ethanol with biological membranes. Fed Proc. 1981 May 15;40(7):2073–2076. [PubMed] [Google Scholar]
- Greenberg D. A., Cooper E. C., Gordon A., Diamond I. Ethanol and the gamma-aminobutyric acid-benzodiazepine receptor complex. J Neurochem. 1984 Apr;42(4):1062–1068. doi: 10.1111/j.1471-4159.1984.tb12711.x. [DOI] [PubMed] [Google Scholar]
- Guidotti A., Corda M. G., Wise B. C., Vaccarino F., Costa E. GABAergic synapses. Supramolecular organization and biochemical regulation. Neuropharmacology. 1983 Dec;22(12B):1471–1479. doi: 10.1016/0028-3908(83)90115-6. [DOI] [PubMed] [Google Scholar]
- Harris R. A., Allan A. M. Functional coupling of gamma-aminobutyric acid receptors to chloride channels in brain membranes. Science. 1985 May 31;228(4703):1108–1110. doi: 10.1126/science.2581319. [DOI] [PubMed] [Google Scholar]
- Hollingsworth E. B., McNeal E. T., Burton J. L., Williams R. J., Daly J. W., Creveling C. R. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3':5'-monophosphate-generating systems, receptors, and enzymes. J Neurosci. 1985 Aug;5(8):2240–2253. doi: 10.1523/JNEUROSCI.05-08-02240.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt W. A., Majchrowicz E. Studies of neurotransmitter interactions after acute and chronic ethanol administration. Pharmacol Biochem Behav. 1983;18 (Suppl 1):371–374. [PubMed] [Google Scholar]
- Koob G. F., Strecker R. E., Bloom F. E. Effects of naloxone on the anticonflict properties of alcohol and chlordiazepoxide. Subst Alcohol Actions Misuse. 1980;1(5-6):447–457. [PubMed] [Google Scholar]
- Liljequist S., Engel J. A. The effects of GABA and benzodiazepine receptor antagonists on the anti-conflict actions of diazepam or ethanol. Pharmacol Biochem Behav. 1984 Oct;21(4):521–525. doi: 10.1016/s0091-3057(84)80033-7. [DOI] [PubMed] [Google Scholar]
- Liljequist S., Engel J. A. The effects of GABA and benzodiazepine receptor antagonists on the anti-conflict actions of diazepam or ethanol. Pharmacol Biochem Behav. 1984 Oct;21(4):521–525. doi: 10.1016/s0091-3057(84)80033-7. [DOI] [PubMed] [Google Scholar]
- Majchrowicz E. Induction of physical dependence upon ethanol and the associated behavioral changes in rats. Psychopharmacologia. 1975 Sep 17;43(3):245–254. doi: 10.1007/BF00429258. [DOI] [PubMed] [Google Scholar]
- Michaelis E. K., Chang H. H., Roy S., McFaul J. A., Zimbrick J. D. Ethanol effects on synaptic glutamate receptor function and on membrane lipid organization. Pharmacol Biochem Behav. 1983;18 (Suppl 1):1–6. doi: 10.1016/0091-3057(83)90138-7. [DOI] [PubMed] [Google Scholar]
- Nestoros J. N. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science. 1980 Aug 8;209(4457):708–710. doi: 10.1126/science.7394531. [DOI] [PubMed] [Google Scholar]
- Olsen R. W. Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol. 1982;22:245–277. doi: 10.1146/annurev.pa.22.040182.001333. [DOI] [PubMed] [Google Scholar]
- Olsen R. W. GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem. 1981 Jul;37(1):1–13. doi: 10.1111/j.1471-4159.1981.tb05284.x. [DOI] [PubMed] [Google Scholar]
- Ramanjaneyulu R., Ticku M. K. Binding characteristics and interactions of depressant drugs with [35S]t-butylbicyclophosphorothionate, a ligand that binds to the picrotoxinin site. J Neurochem. 1984 Jan;42(1):221–229. doi: 10.1111/j.1471-4159.1984.tb09721.x. [DOI] [PubMed] [Google Scholar]
- Rohde B. H., Harris R. A. Effects of barbiturates and ethanol on muscimol-induced release of [3H]-D-aspartate from rodent cerebellum. Neuropharmacology. 1983 Jun;22(6):721–727. doi: 10.1016/0028-3908(83)90096-5. [DOI] [PubMed] [Google Scholar]
- Sandoval M. E. Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization. J Neurochem. 1980 Oct;35(4):915–921. doi: 10.1111/j.1471-4159.1980.tb07090.x. [DOI] [PubMed] [Google Scholar]
- Schwartz R. D., Jackson J. A., Weigert D., Skolnick P., Paul S. M. Characterization of barbiturate-stimulated chloride efflux from rat brain synaptoneurosomes. J Neurosci. 1985 Nov;5(11):2963–2970. doi: 10.1523/JNEUROSCI.05-11-02963.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz R. D., Skolnick P., Hollingsworth E. B., Paul S. M. Barbiturate and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes. FEBS Lett. 1984 Sep 17;175(1):193–196. doi: 10.1016/0014-5793(84)80597-9. [DOI] [PubMed] [Google Scholar]
- Simmonds M. A. Distinction between the effects of barbiturates, benzodiazepines and phenytoin on responses to gamma-aminobutyric acid receptor activation and antagonism by bicuculline and picrotoxin. Br J Pharmacol. 1981 Jul;73(3):739–747. doi: 10.1111/j.1476-5381.1981.tb16810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squires R. F., Casida J. E., Richardson M., Saederup E. [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to gamma-aminobutyric acid-A and ion recognition sites. Mol Pharmacol. 1983 Mar;23(2):326–336. [PubMed] [Google Scholar]
- Strong R., Wood W. G. Membrane properties and aging: in vivo and in vitro effects of ethanol on synaptosomal gamma-aminobutyric acid (GABA) release. J Pharmacol Exp Ther. 1984 Jun;229(3):726–730. [PubMed] [Google Scholar]
- Sytinsky I. A., Guzikov B. M., Gomanko M. V., Eremin V. P., Konovalova N. N. The gamma-aminobutyric acid (GABA) system in brain during acute and chronic ethanol intoxication. J Neurochem. 1975 Jul;25(1):43–48. doi: 10.1111/j.1471-4159.1975.tb07691.x. [DOI] [PubMed] [Google Scholar]
- Thampy K. G., Barnes E. M., Jr gamma-Aminobutyric acid-gated chloride channels in cultured cerebral neurons. J Biol Chem. 1984 Feb 10;259(3):1753–1757. [PubMed] [Google Scholar]
- Ticku M. K., Burch T. P., Davis W. C. The interactions of ethanol with the benzodiazepine-GABA receptor-ionophore complex. Pharmacol Biochem Behav. 1983;18 (Suppl 1):15–18. doi: 10.1016/0091-3057(83)90140-5. [DOI] [PubMed] [Google Scholar]
- Wixon H. N., Hunt W. A. Effect of acute and chronic ethanol treatment on gamma-aminobutyric acid levels and on aminooxyacetic acid-induced GABA accumulation. Subst Alcohol Actions Misuse. 1980;1(5-6):481–491. [PubMed] [Google Scholar]
- Wong E. H., Leeb-Lundberg L. M., Teichberg V. I., Olsen R. W. gamma-Aminobutyric acid activation of 36Cl- flux in rat hippocampal slices and its potentiation by barbiturates. Brain Res. 1984 Jun 15;303(2):267–275. doi: 10.1016/0006-8993(84)91213-7. [DOI] [PubMed] [Google Scholar]