Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Oct 10;8(19):4349–4363. doi: 10.1093/nar/8.19.4349

Molecular structure of the immunity gene and immunity protein of the bacteriocinogenic plasmid Clo DF13.

P J van den Elzen, W Gaastra, C E Spelt, F K de Graaf, E Veltkamp, H J Nijkamp
PMCID: PMC324244  PMID: 6253914

Abstract

The nucleotide sequence of the Clo DF13 DNA region comprising the immunity gene has been determined. We also elucidated the aminoacid sequence of the 40 N-terminal and 7 C-terminal aminoacids of the purified immunity protein. From analysis of the data obtained we were able to locate the immunity gene between 11.7 and 14.5% on the Clo DF13 map, and to determine the complete aminoacid sequence of the immunity protein. It was observed that the Clo DF13 immunity gene encodes an 85 aminoacid protein and is transcribed in the same direction as the cloacin gene. These experimental data support our model, presented elsewhere, which implicates that the cloacin and immunity genes of Clo DF13 are coordinately transcribed from the cloacin promoter. We also present DNA sequence data indicating that an extra ribosome binding site precedes the immunity gene on the polycistronic mRNA. This ribosome binding site might explain the fact that in cloacinogenic cells more immunity protein than cloacin is synthesized. The comparison of the complete aminoacid sequence of the Clo DF13 immunity protein, with the aminoacid sequence data of the purified, comparable Col E3 immunity protein revealed that both proteins have extensive homologies in primary and secondary structure, although they are exchangeable only to a low extent in vivo and in vitro. It was also observed that a lysine residue was modified in immunity protein isolated from excreted bacteriocin complexes.

Full text

PDF
4349

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler H. I., Fisher W. D., Cohen A., Hardigree A. A. MINIATURE escherichia coli CELLS DEFICIENT IN DNA. Proc Natl Acad Sci U S A. 1967 Feb;57(2):321–326. doi: 10.1073/pnas.57.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreoli P. M., Overbeeke N., Veltkamp E., van Embden J. D., Nijkamp H. J. Genetic map of the bacteriocinogenic plasmid CLO DF13 derived by insertion of the transposon Tn901. Mol Gen Genet. 1978 Mar 20;160(1):1–11. doi: 10.1007/BF00275113. [DOI] [PubMed] [Google Scholar]
  3. Clark J. James Roland Clark, M.D. June 29, 1937--February 2, 1979. J S C Med Assoc. 1979 Mar;75(3):125–125. [PubMed] [Google Scholar]
  4. De Graaf F. K., Klaasen-Boor P. Purification and characterization of a complex between cloacin and its immunity protein isolated from Enterobacter cloacae (Clo DF13). Dissociation and reconstitution of the complex. Eur J Biochem. 1977 Feb 15;73(1):107–114. doi: 10.1111/j.1432-1033.1977.tb11296.x. [DOI] [PubMed] [Google Scholar]
  5. Dougan G., Sherratt D. J. Changes in protein synthesis on mitomycin C induction of wild-type and mutant CloDF13 plasmids. J Bacteriol. 1977 May;130(2):846–851. doi: 10.1128/jb.130.2.846-851.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gaastra W., Welling G. W., Beintema J. J. The amino-acid sequence of kangaroo pancreatic ribonuclease. Eur J Biochem. 1978 May;86(1):209–217. doi: 10.1111/j.1432-1033.1978.tb12301.x. [DOI] [PubMed] [Google Scholar]
  7. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kool A. J., Borstlap A. J., Nijkamp H. J. Bacteriocinogenic Clo DF13 minicells of Escherichia coli synthesize a protein that accounts for immunity to bacteriocin Clo DF16: action of the immunity protein in vivo and in vitro. Antimicrob Agents Chemother. 1975 Jul;8(1):76–85. doi: 10.1128/aac.8.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kool A. J., Pols C., Nijkamp H. J. Bacteriocinogenic Clo DF13 minicells of Escherichia coli synthesize a protein that accounts for immunity to bacteriocin Clo DF13: purification and characterization of the immunity protein. Antimicrob Agents Chemother. 1975 Jul;8(1):67–75. doi: 10.1128/aac.8.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lenstra J. A., Hofsteenge J., Beintema J. J. Invariant features of the structure of pancreatic ribonuclease. A test of different predictive models. J Mol Biol. 1977 Jan 15;109(2):185–193. doi: 10.1016/s0022-2836(77)80028-4. [DOI] [PubMed] [Google Scholar]
  11. Maat J., Smith A. J. A method for sequencing restriction fragments with dideoxynucleoside triphosphates. Nucleic Acids Res. 1978 Dec;5(12):4537–4545. doi: 10.1093/nar/5.12.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oka A., Nomura N., Morita M., Sugisaki H., Sugimoto K., Takanami M. Nucleotide sequence of small ColE1 derivatives: structure of the regions essential for autonomous replication and colicin E1 immunity. Mol Gen Genet. 1979 May 4;172(2):151–159. doi: 10.1007/BF00268276. [DOI] [PubMed] [Google Scholar]
  13. Patient R. K. Characterization of in vitro transcription initiation and termination sites in Col E1 DNA. Nucleic Acids Res. 1979 Jun 25;6(8):2647–2665. doi: 10.1093/nar/6.8.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pribnow D. Bacteriophage T7 early promoters: nucleotide sequences of two RNA polymerase binding sites. J Mol Biol. 1975 Dec 15;99(3):419–443. doi: 10.1016/s0022-2836(75)80136-7. [DOI] [PubMed] [Google Scholar]
  15. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  16. Sidikaro J., Nomura M. E3 immunity substance. A protein from e3-colicinogenic cells that accounts for their immunity to colicin E3. J Biol Chem. 1974 Jan 25;249(2):445–453. [PubMed] [Google Scholar]
  17. Smith H. O., Birnstiel M. L. A simple method for DNA restriction site mapping. Nucleic Acids Res. 1976 Sep;3(9):2387–2398. doi: 10.1093/nar/3.9.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stuitje A. R., Veltkamp E., Maat J., Heyneker H. L. The nucleotide sequence surrounding the replication origin of the cop3 mutant of the bacteriocinogenic plasmid Clo DF13. Nucleic Acids Res. 1980 Apr 11;8(7):1459–1473. doi: 10.1093/nar/8.7.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tarr G. E. A general procedure for the manual sequencing of small quantities of peptides. Anal Biochem. 1975 Feb;63(2):361–370. doi: 10.1016/0003-2697(75)90358-9. [DOI] [PubMed] [Google Scholar]
  21. Tieze G. A., Stouthamer A. H., Jansz H. S., Zandberg J., van Bruggen E. F. A bacteriocinogenic factor of Enterobacter cloacae. Mol Gen Genet. 1969;106(1):48–65. [PubMed] [Google Scholar]
  22. Tyler J., Sherratt D. J. Synthesis of E colicins in Escherichia coli. Mol Gen Genet. 1975 Oct 22;140(4):349–353. doi: 10.1007/BF00267325. [DOI] [PubMed] [Google Scholar]
  23. Van den Berg A., Van den Hende-Timmer L., Hofsteenge J., Gaastra W., Beintema J. J. Guinea-pig pancreatic ribonucleases. Isolation, properties, primary structure and glycosidation. Eur J Biochem. 1977 May 2;75(1):91–100. doi: 10.1111/j.1432-1033.1977.tb11507.x. [DOI] [PubMed] [Google Scholar]
  24. Veltkamp E., Barendsen W., Nijkamp H. J. Influence of protein and ribonucleic acid synthesis on the replication of the bacteriocinogenic factor Clo DF13 in Escherichia coli cells and minicells. J Bacteriol. 1974 Apr;118(1):165–174. doi: 10.1128/jb.118.1.165-174.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Veltkamp E., Nijkamp H. J. Characterization of a replication mutant of the bacteriocinogenic plasmid Clo DF13. Biochim Biophys Acta. 1976 Mar 17;425(3):356–367. doi: 10.1016/0005-2787(76)90263-x. [DOI] [PubMed] [Google Scholar]
  26. Veltkamp E., van de Pol H., Stuitje A. R., van den Elzen P. J., Nijkamp H. J. Replication and gene functions of the bacteriocinogenic plasmid CloDF13. Contrib Microbiol Immunol. 1979;6:111–121. [PubMed] [Google Scholar]
  27. de Graaf F. K., Goedvolk-de Groot L. E., Stouthamer A. H. Purification of a bacteriocin produced by Enterobacter cloacae DF 13. Biochim Biophys Acta. 1970 Dec 22;221(3):566–575. doi: 10.1016/0005-2795(70)90228-x. [DOI] [PubMed] [Google Scholar]
  28. de Graaf F. K., Klaasen-Boor P. Purification and characterization of the cloacin DF13 immunity protein. FEBS Lett. 1974 Apr 1;40(2):293–296. doi: 10.1016/0014-5793(74)80247-4. [DOI] [PubMed] [Google Scholar]
  29. de Graaf F. K., Niekus H. G., Klootwijk J. Inactivation of bacterial ribosomes in vivo and in vitro by cloacin DF13. FEBS Lett. 1973 Sep 1;35(1):161–165. doi: 10.1016/0014-5793(73)80601-5. [DOI] [PubMed] [Google Scholar]
  30. van de Pol H., Veltkamp E., Nijkamp H. J. Clo DF13 plasmid genes affecting Flac transfer and propagation of male specific RNA phages. Mol Gen Genet. 1979 Jan 11;168(3):309–317. doi: 10.1007/BF00271501. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES