Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Oct 10;8(19):4535–4541. doi: 10.1093/nar/8.19.4535

Nucleotide sequence analysis of precursor 5S RNA from Bacillus licheniformis.

W J Stiekema, R de Leede-Twente, H A Raué, R J Planta
PMCID: PMC324257  PMID: 6159590

Abstract

The complete nucleotide sequences of the various precursor 5S RNA species occurring in Bacillus licheniformis have been elucidated. The B. licheniformis precursors contain a 5'-precursor-specific segment of 95 nucleotides which is four times as long as the corresponding segment of the p5S RNAs from the closely related strains B. subtilis (Sogin, M.L., Pace, N.R., Rosenberg, M., Weissman, S.M. (1976) J. Biol. Chem. 251, 3480-3488) and Bacillus Q (Stiekema, W.J., Raué, H.A., Planta, R.J. (1980) Nucl. Ac. Res. 8, 2193-2211). However, fourteen of the sixteen nucleotides at the 5'-end are identical in the precursors from all three strains. These conserved nucleotides can form a stem and loop structure which is likely to play an important role in the biosynthesis of 5S RNA. Extension secondary and tertiary structure is present in the 5'-precursor-specific segment as concluded from the results of digestion with RNAase T1 both of the isolated segment and the intact precursors. No sequence homology exists between the 3'-precursor-specific segments of the B. licheniformis precursors and those of the other two strains except for a stretch of U residues at the 3-terminus. This stretch of U residues is not immediately preceded by a hairpin loop, however, as expected for a transcription termination signal (20). The question whether the precursors have already undergone processing at the 3'-end, therefore, remains open. The total number of genetically distinct precursor species in B. licheniformis is at least five and at most ten. Most likely each ribosomal RNA cistron produces a separate p5S RNA as is also the case in Bacillus Q.

Full text

PDF
4539

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Gottesman M. Control of transcription termination. Annu Rev Biochem. 1978;47:967–996. doi: 10.1146/annurev.bi.47.070178.004535. [DOI] [PubMed] [Google Scholar]
  2. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  3. Meyhack B., Pace B., Pace N. R. Involvement of precursor-specific segments in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1977 Nov 15;16(23):5009–5015. doi: 10.1021/bi00642a011. [DOI] [PubMed] [Google Scholar]
  4. Meyhack B., Pace B., Uhlenbeck O. C., Pace N. R. Use of T4 RNA ligase to construct model substrates for a ribosomal RNA maturation endonuclease. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3045–3049. doi: 10.1073/pnas.75.7.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Meyhack B., Pace N. R. Involvement of the mature domain in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1978 Dec 26;17(26):5804–5810. doi: 10.1021/bi00619a030. [DOI] [PubMed] [Google Scholar]
  6. Morgan E. A., Ikemura T., Lindahl L., Fallon A. M., Nomura M. Some rRNA operons in E. coli have tRNA genes at their distal ends. Cell. 1978 Feb;13(2):335–344. doi: 10.1016/0092-8674(78)90202-7. [DOI] [PubMed] [Google Scholar]
  7. Raué H. A., Heerschap A., Planta R. J. Occurrence in Bacillus licheniformis of two species of 5-S RNA with multiple differences in primary structure. Eur J Biochem. 1976 Sep;68(1):169–176. doi: 10.1111/j.1432-1033.1976.tb10775.x. [DOI] [PubMed] [Google Scholar]
  8. Raué H. A., Rosner A., Planta R. J. Heterogeneity of the genes coding for 5 S RNA in three related strains of the genus Bacillus. Mol Gen Genet. 1977 Nov 14;156(2):185–193. doi: 10.1007/BF00283491. [DOI] [PubMed] [Google Scholar]
  9. Sogin M. L., Pace B., Pace N. R. Partial purification and properties of a ribosomal RNA maturation endonuclease from Bacillus subtilis. J Biol Chem. 1977 Feb 25;252(4):1350–1357. [PubMed] [Google Scholar]
  10. Sogin M. L., Pace N. R. In vitro maturation of precursors of 5S ribosomal RNA from Bacillus subtilis. Nature. 1974 Dec 13;252(5484):598–600. doi: 10.1038/252598a0. [DOI] [PubMed] [Google Scholar]
  11. Stahl D. A., Walker T. A., Meyhack B., Pace N. R. Precursor-specific nucleotide sequences can govern RNA folding. Cell. 1979 Dec;18(4):1133–1143. doi: 10.1016/0092-8674(79)90226-5. [DOI] [PubMed] [Google Scholar]
  12. Stiekema W. J., Raué H. A., Planta R. J. Sequence analysis and in vitro maturation of five precursor 5S RNAs from Bacillus Q. Nucleic Acids Res. 1980 May 24;8(10):2193–2211. doi: 10.1093/nar/8.10.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stoof T. J., De Regt V. C., Raué H. A., Planta R. J. Two precursor 5S RNA species in Bacillus licheniformis: characterization and partial analysis of primary structure. FEBS Lett. 1974 Dec 15;49(2):237–241. doi: 10.1016/0014-5793(74)80520-x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES