Skip to main content
The Texas Heart Institute Journal logoLink to The Texas Heart Institute Journal
. 1991;18(3):179–185.

Documentation of Experimentally Induced Thrombus Formation Using Intravascular Ultrasound

James J Ferguson 1, Judy C Ober 1, Sidney K Edelman 1, L Maximilian Buja 1, James T Willerson 1
PMCID: PMC324994  PMID: 15227477

Abstract

The purpose of the present study is to assess the ability of intravascular ultrasound to detect acute dynamic thrombus formation in canine blood vessels with damaged endothelium. Ultrasound catheters (20 MHz) were placed in the femoral arteries of anesthetized dogs, and imaging transducers were positioned at the sites of external constrictors applied to areas of endothelial injury. Flows were measured with externally applied Doppler crystals placed proximal to the constrictors. Twenty experimental procedures were performed in 18 dogs. Four procedures were performed using the InterTherapy system (4.9 Fr catheters) and 16 procedures were performed using the Boston Scientific/Diasonics system (6.0 and 4.8 Fr catheters). After injuring the endothelium by rubbing the adventitial surface with cushioned forceps, we placed the constrictors and catheters and found that femoral blood flow usually decreased to zero or near-zero over a 3- to 4-minute period. Striking the exposed artery dislodged the obstruction seen on the intravascular ultrasound images and restored flow to normal; spontaneous increases in flow associated with a reopening of the lumen were also noted. After femoral arterial blood flow returned to normal, another cycle of decreasing flow and thrombus formation was spontaneously initiated. Intravascular ultrasound images of thrombus formation were obtained in 18 of 20 experimental procedures, all associated with zero or near-zero arterial flow. Images obtained during spontaneous decreases in femoral artery flow demonstrated the gradual accumulation of material on the lumen. The obstructing thrombus had distinct borders and a “speckled” appearance on ultrasound, especially on dynamic images, which became increasingly bright and uniform with time. At the end of each procedure, the arterial segments were removed for histologic analysis. Gross thrombus was visible in all cases.

Therefore, in this experimental model, intravascular ultrasound can successfully detect both the acute formation of thrombus associated with spontaneous episodes of decreased flow and the resolution of thrombus within injured and narrowed femoral arteries. Fresh thrombus has a unique ultrasound pattern that evolves gradually over time. (Texas Heart Institute Journal 1991;18:179-85)

Keywords: Animals

Keywords: dogs

Keywords: platelet aggregation

Keywords: thrombosis, diagnosis

Keywords: ultrasonography, instrumentation

Keywords: ultrasonography, methods

Keywords: vascular diseases, diagnosis

Keywords: vasoconstriction

Full text

PDF
181

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton J. H., Benedict C. R., Fitzgerald C., Raheja S., Taylor A., Campbell W. B., Buja L. M., Willerson J. T. Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation. 1986 Mar;73(3):572–578. doi: 10.1161/01.cir.73.3.572. [DOI] [PubMed] [Google Scholar]
  2. Ashton J. H., Ogletree M. L., Michel I. M., Golino P., McNatt J. M., Taylor A. L., Raheja S., Schmitz J., Buja L. M., Campbell W. B. Cooperative mediation by serotonin S2 and thromboxane A2/prostaglandin H2 receptor activation of cyclic flow variations in dogs with severe coronary artery stenoses. Circulation. 1987 Oct;76(4):952–959. doi: 10.1161/01.cir.76.4.952. [DOI] [PubMed] [Google Scholar]
  3. Ashton J. H., Schmitz J. M., Campbell W. B., Ogletree M. L., Raheja S., Taylor A. L., Fitzgerald C., Buja L. M., Willerson J. T. Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2 receptor antagonists. Circ Res. 1986 Nov;59(5):568–578. doi: 10.1161/01.res.59.5.568. [DOI] [PubMed] [Google Scholar]
  4. Bush L. R., Campbell W. B., Buja L. M., Tilton G. D., Willerson J. T. Effects of the selective thromboxane synthetase inhibitor dazoxiben on variations in cyclic blood flow in stenosed canine coronary arteries. Circulation. 1984 Jun;69(6):1161–1170. doi: 10.1161/01.cir.69.6.1161. [DOI] [PubMed] [Google Scholar]
  5. Bush L. R., Campbell W. B., Kern K., Tilton G. D., Apprill P., Ashton J., Schmitz J., Buja L. M., Willerson J. T. The effects of alpha 2-adrenergic and serotonergic receptor antagonists on cyclic blood flow alterations in stenosed canine coronary arteries. Circ Res. 1984 Nov;55(5):642–652. doi: 10.1161/01.res.55.5.642. [DOI] [PubMed] [Google Scholar]
  6. Coll A. M. Sante et ajustement structurel. Vie Sante. 1990 Jan;(2):13–15. [PubMed] [Google Scholar]
  7. Coller B. S., Scudder L. E. Inhibition of dog platelet function by in vivo infusion of F(ab')2 fragments of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor. Blood. 1985 Dec;66(6):1456–1459. [PubMed] [Google Scholar]
  8. Davidson C. J., Sheikh K. H., Harrison J. K., Himmelstein S. I., Leithe M. E., Kisslo K. B., Bashore T. M. Intravascular ultrasonography versus digital subtraction angiography: a human in vivo comparison of vessel size and morphology. J Am Coll Cardiol. 1990 Sep;16(3):633–636. doi: 10.1016/0735-1097(90)90354-r. [DOI] [PubMed] [Google Scholar]
  9. Eidt J. F., Allison P., Noble S., Ashton J., Golino P., McNatt J., Buja L. M., Willerson J. T. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury. J Clin Invest. 1989 Jul;84(1):18–27. doi: 10.1172/JCI114138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Folts J. D., Crowell E. B., Jr, Rowe G. G. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation. 1976 Sep;54(3):365–370. doi: 10.1161/01.cir.54.3.365. [DOI] [PubMed] [Google Scholar]
  11. Folts J. D., Gallagher K., Rowe G. G. Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation? Circulation. 1982 Feb;65(2):248–255. doi: 10.1161/01.cir.65.2.248. [DOI] [PubMed] [Google Scholar]
  12. Forrester J. S., Litvack F., Grundfest W., Hickey A. A perspective of coronary disease seen through the arteries of living man. Circulation. 1987 Mar;75(3):505–513. doi: 10.1161/01.cir.75.3.505. [DOI] [PubMed] [Google Scholar]
  13. Golino P., Ashton J. H., Buja L. M., Rosolowsky M., Taylor A. L., McNatt J., Campbell W. B., Willerson J. T. Local platelet activation causes vasoconstriction of large epicardial canine coronary arteries in vivo. Thromboxane A2 and serotonin are possible mediators. Circulation. 1989 Jan;79(1):154–166. doi: 10.1161/01.cir.79.1.154. [DOI] [PubMed] [Google Scholar]
  14. Golino P., Buja L. M., Ashton J. H., Kulkarni P., Taylor A., Willerson J. T. Effect of thromboxane and serotonin receptor antagonists on intracoronary platelet deposition in dogs with experimentally stenosed coronary arteries. Circulation. 1988 Sep;78(3):701–711. doi: 10.1161/01.cir.78.3.701. [DOI] [PubMed] [Google Scholar]
  15. Hirsh P. D., Hillis L. D., Campbell W. B., Firth B. G., Willerson J. T. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med. 1981 Mar 19;304(12):685–691. doi: 10.1056/NEJM198103193041201. [DOI] [PubMed] [Google Scholar]
  16. Hodgson J. M., Graham S. P., Savakus A. D., Dame S. G., Stephens D. N., Dhillon P. S., Brands D., Sheehan H., Eberle M. J. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging. 1989;4(2-4):187–193. doi: 10.1007/BF01745149. [DOI] [PubMed] [Google Scholar]
  17. Mallery J. A., Tobis J. M., Griffith J., Gessert J., McRae M., Moussabeck O., Bessen M., Moriuchi M., Henry W. L. Assessment of normal and atherosclerotic arterial wall thickness with an intravascular ultrasound imaging catheter. Am Heart J. 1990 Jun;119(6):1392–1400. doi: 10.1016/s0002-8703(05)80190-5. [DOI] [PubMed] [Google Scholar]
  18. Meyer C. R., Chiang E. H., Fechner K. P., Fitting D. W., Williams D. M., Buda A. J. Feasibility of high-resolution, intravascular ultrasonic imaging catheters. Radiology. 1988 Jul;168(1):113–116. doi: 10.1148/radiology.168.1.3289084. [DOI] [PubMed] [Google Scholar]
  19. Neville R. F., Bartorelli A. L., Sidawy A. N., Almagor Y., Potkin B., Leon M. B. An in vivo feasibility study of intravascular ultrasound imaging. Am J Surg. 1989 Aug;158(2):142–145. doi: 10.1016/0002-9610(89)90363-2. [DOI] [PubMed] [Google Scholar]
  20. Nishimura R. A., Edwards W. D., Warnes C. A., Reeder G. S., Holmes D. R., Jr, Tajik A. J., Yock P. G. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol. 1990 Jul;16(1):145–154. doi: 10.1016/0735-1097(90)90472-2. [DOI] [PubMed] [Google Scholar]
  21. Nissen S. E., Grines C. L., Gurley J. C., Sublett K., Haynie D., Diaz C., Booth D. C., DeMaria A. N. Application of a new phased-array ultrasound imaging catheter in the assessment of vascular dimensions. In vivo comparison to cineangiography. Circulation. 1990 Feb;81(2):660–666. doi: 10.1161/01.cir.81.2.660. [DOI] [PubMed] [Google Scholar]
  22. Pandian N. G., Kreis A., Brockway B. Detection of intraarterial thrombus by intravascular high frequency two-dimensional ultrasound imaging in vitro and in vivo studies. Am J Cardiol. 1990 May 15;65(18):1280–1283. doi: 10.1016/0002-9149(90)90994-c. [DOI] [PubMed] [Google Scholar]
  23. Pandian N. G., Kreis A., Brockway B., Isner J. M., Sacharoff A., Boleza E., Caro R., Muller D. Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol. 1988 Sep 1;62(7):493–494. doi: 10.1016/0002-9149(88)90992-7. [DOI] [PubMed] [Google Scholar]
  24. Pandian N. G., Kreis A., Brockway B., Sacharoff A., Caro R. Intravascular high frequency two-dimensional ultrasound detection of arterial dissection and intimal flaps. Am J Cardiol. 1990 May 15;65(18):1278–1280. doi: 10.1016/0002-9149(90)90993-b. [DOI] [PubMed] [Google Scholar]
  25. Pandian N. G., Kreis A., Weintraub A., Motarjeme A., Desnoyers M., Isner J. M., Konstam M., Salem D. N., Millen V. Real-time intravascular ultrasound imaging in humans. Am J Cardiol. 1990 Jun 1;65(20):1392–1396. doi: 10.1016/0002-9149(90)91334-3. [DOI] [PubMed] [Google Scholar]
  26. Tobis J. M., Mahon D., Moriuchi M., Mallery J. A., Lehmann K., Griffith J., Gessert J., Zalesky P., McRae M., Dwyer M. L. Intravascular ultrasonic imaging. Tex Heart Inst J. 1990;17(3):181–189. [PMC free article] [PubMed] [Google Scholar]
  27. Tobis J. M., Mallery J. A., Gessert J., Griffith J., Mahon D., Bessen M., Moriuchi M., McLeay L., McRae M., Henry W. L. Intravascular ultrasound cross-sectional arterial imaging before and after balloon angioplasty in vitro. Circulation. 1989 Oct;80(4):873–882. doi: 10.1161/01.cir.80.4.873. [DOI] [PubMed] [Google Scholar]
  28. Vlodaver Z., Frech R., Van Tassel R. A., Edwards J. E. Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation. 1973 Jan;47(1):162–169. doi: 10.1161/01.cir.47.1.162. [DOI] [PubMed] [Google Scholar]
  29. Willerson J. T., Golino P., Eidt J., Campbell W. B., Buja L. M. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation. 1989 Jul;80(1):198–205. doi: 10.1161/01.cir.80.1.198. [DOI] [PubMed] [Google Scholar]

Articles from Texas Heart Institute Journal are provided here courtesy of Texas Heart Institute

RESOURCES