Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1983 Jun 11;11(11):3823–3832. doi: 10.1093/nar/11.11.3823

A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression.

D A Steege
PMCID: PMC326005  PMID: 6344015

Abstract

The tRNAs specified by the wild type and amber suppressor alleles of the Escherichia coli supD gene have been identified, and their primary structures determined. The sequences differ by a single nucleotide in the middle of the anticodon. A CUA anticodon allows the suppressor tRNA to read the UAG stop codon; the CGA anticodon in the minor serine tRNA species from which the suppressor is derived is specific for the serine codon UCG.

Full text

PDF
3832

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTTIN G. M'ECANISMES R'EGULATEURS DANS LA BIOSYNTH'ESE DES ENZYMES DU M'ETABOLISME DU GALACTOSE CHEZ ESCHERICHIA COLI K12. III. L'"EFFET DE D'ER'EPRESSION" PROVOQU'E PAR LE D'EVELOPPEMENT DU PHAGE LAMBDA. J Mol Biol. 1963 Dec;7:610–631. doi: 10.1016/s0022-2836(63)80108-4. [DOI] [PubMed] [Google Scholar]
  2. Capecchi M. R., Gussin G. N. Suppression in vitro: Identification of a Serine-sRNA as a "Nonsense" Suppressor. Science. 1965 Jul 23;149(3682):417–422. doi: 10.1126/science.149.3682.417. [DOI] [PubMed] [Google Scholar]
  3. Cashman J. S., Webster R. E., Steege D. A. Transcription of bacteriophage fl. The major in vivo RNAs. J Biol Chem. 1980 Mar 25;255(6):2554–2562. [PubMed] [Google Scholar]
  4. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelhardt D. L., Webster R. E., Wilhelm R. C., Zinder N. In vitro studies on the mechanism of suppression of a nonsense mutation. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1791–1797. doi: 10.1073/pnas.54.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garel J. P., Garber R. L., Siddiqui M. A. Transfer RNA in posterior silk gland of Bombyx mori: polyacrylamide gel mapping of mature transfer RNA, identification and partial structural characterization of major isoacceptor species. Biochemistry. 1977 Aug 9;16(16):3618–3624. doi: 10.1021/bi00635a018. [DOI] [PubMed] [Google Scholar]
  7. Garen A., Garen S., Wilhelm R. C. Suppressor genes for nonsense mutations. I. The Su-1, Su-2 and Su-3 genes of Escherichia coli. J Mol Biol. 1965 Nov;14(1):167–178. doi: 10.1016/s0022-2836(65)80238-8. [DOI] [PubMed] [Google Scholar]
  8. Gesteland R. F., Salser W., Bolle A. In vitro synthesis of T4 lysozyme by suppression of amber mutations. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2036–2042. doi: 10.1073/pnas.58.5.2036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gupta R. C., Randerath K. Rapid print-readout technique for sequencing of RNA's containing modified nucleotides. Nucleic Acids Res. 1979 Aug 10;6(11):3443–3458. doi: 10.1093/nar/6.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol. 1971 Jun 14;58(2):439–458. doi: 10.1016/0022-2836(71)90362-7. [DOI] [PubMed] [Google Scholar]
  11. Hoffman E. P., Wilhelm R. C. Genetic mapping and dominance of the amber suppressor, Su1 (supD), in Escherichia coli K-12. J Bacteriol. 1970 Jul;103(1):32–36. doi: 10.1128/jb.103.1.32-36.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ikemura T., Ozeki H. Gross map location of Escherichia coli transfer RNA genes. J Mol Biol. 1977 Dec 5;117(2):419–446. doi: 10.1016/0022-2836(77)90136-x. [DOI] [PubMed] [Google Scholar]
  13. Ish-Horowicz D., Clark B. F. The nucleotide sequence of a serine transfer ribonucleic acid from Escherichia coli. J Biol Chem. 1973 Oct 10;248(19):6663–6673. [PubMed] [Google Scholar]
  14. Ishikura H., Yamada Y., Nishimura S. The nucleotide sequence of a serine tRNA from Escherichia coli. FEBS Lett. 1971 Jul 15;16(1):68–70. doi: 10.1016/0014-5793(71)80688-9. [DOI] [PubMed] [Google Scholar]
  15. Johnson L., Hayashi H., Söll D. Isolation and properties of a transfer ribonucleic acid deficient in ribothymidine. Biochemistry. 1970 Jul 7;9(14):2823–2831. doi: 10.1021/bi00816a011. [DOI] [PubMed] [Google Scholar]
  16. Kramer R. A., Rosenberg M. The isolation and characterization of bacteriophage T7 messenger RNA fragments containing an RNase III cleavage site. Nucleic Acids Res. 1976 Oct;3(10):2411–2426. doi: 10.1093/nar/3.10.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krell K., Gottesman M. E., Parks J. S., Eisenberg M. A. Escape synthesis of the biotin operon in induced lambda b-2 lysogens. J Mol Biol. 1972 Jul 14;68(1):69–82. doi: 10.1016/0022-2836(72)90263-x. [DOI] [PubMed] [Google Scholar]
  18. Kwong T. C., Steege D., Lawler D., Söll D. Bacteriophage lambda induction causes increased production of E. coli lysine transfer RNA. Arch Biochem Biophys. 1975 Oct;170(2):651–658. doi: 10.1016/0003-9861(75)90161-7. [DOI] [PubMed] [Google Scholar]
  19. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  20. McClain W. H., Barrell B. G., Seidman J. G. Nucleotide alterations in bacteriophage T4 serine transfer RNA that affect the conversion of precursor RNA into transfer RNA. J Mol Biol. 1975 Dec 25;99(4):717–732. doi: 10.1016/s0022-2836(75)80181-1. [DOI] [PubMed] [Google Scholar]
  21. NOTANI G. W., ENGELHARDT D. L., KONIGSBERG W., ZINDER N. D. SUPPRESSION OF A COAT PROTEIN MUTANT OF THE BACTERIOPHAGE F2. J Mol Biol. 1965 Jun;12:439–447. doi: 10.1016/s0022-2836(65)80266-2. [DOI] [PubMed] [Google Scholar]
  22. Ohashi K., Harada F., Ohashi Z., Nishimura S., Stewart T. S., Vogeli G., McCutchan T., Soll D. The nucleotide sequence of asparagine tRNA from Escherichia coli. Nucleic Acids Res. 1976 Dec;3(12):3369–3376. doi: 10.1093/nar/3.12.3369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. STRETTON A. O., BRENNER S. MOLECULAR CONSEQUENCES OF THE AMBER MUTATION AND ITS SUPPRESSION. J Mol Biol. 1965 Jun;12:456–465. doi: 10.1016/s0022-2836(65)80268-6. [DOI] [PubMed] [Google Scholar]
  25. Shimada K., Weisberg R. A., Gottesman M. E. Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol. 1972 Feb 14;63(3):483–503. doi: 10.1016/0022-2836(72)90443-3. [DOI] [PubMed] [Google Scholar]
  26. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  27. Steege D. A., Graves M. C., Spremulli L. L. Euglena gracilis chloroplast small subunit rRNA. Sequence and base pairing potential of the 3' terminus, cleavage by colicin E3. J Biol Chem. 1982 Sep 10;257(17):10430–10439. [PubMed] [Google Scholar]
  28. Steege D. A., Low B. Isolation and characterization of lambda transducing bacteriophages for the su1+ (supD minus) amber suppressor of Escherichia coli. J Bacteriol. 1975 Apr;122(1):120–128. doi: 10.1128/jb.122.1.120-128.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Söll D., Cherayil J. D., Bock R. M. Studies on polynucleotides. LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. J Mol Biol. 1967 Oct 14;29(1):97–112. doi: 10.1016/0022-2836(67)90183-0. [DOI] [PubMed] [Google Scholar]
  30. Söll D. Studies on polynucleotides. LXXXV. Partial purification of an amber supressor tRNA and studies on in vitro suppression. J Mol Biol. 1968 May 28;34(1):175–187. doi: 10.1016/0022-2836(68)90243-x. [DOI] [PubMed] [Google Scholar]
  31. Tanaka Y., Dyer T. A., Brownlee G. G. An improved direct RNA sequence method; its application to Vicia faba 5.8S ribosomal RNA. Nucleic Acids Res. 1980 Mar 25;8(6):1259–1272. doi: 10.1093/nar/8.6.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WEIGERT M. G., GAREN A. AMINO ACID SUBSTITUTIONS RESULTING FROM SUPPRESSION OF NONSENSE MUTATIONS. I. SERINE INSERTION BY THE SU-1 SUPPRESSOR GENE. J Mol Biol. 1965 Jun;12:448–455. doi: 10.1016/s0022-2836(65)80267-4. [DOI] [PubMed] [Google Scholar]
  33. Yamada Y., Ishikura H. Nucleotide sequence of tRNA(Ser)(3) from Escherichia coli. FEBS Lett. 1973 Feb 1;29(3):231–234. doi: 10.1016/0014-5793(73)80026-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES