Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1983 Oct 11;11(19):6709–6721. doi: 10.1093/nar/11.19.6709

Ribosomal RNA precursors of Bacillus subtilis.

K Loughney, E Lund, J E Dahlberg
PMCID: PMC326409  PMID: 6314255

Abstract

The DNA sequence of the region corresponding to the 5'-end of a 16S rRNA gene of B. subtilis 168 was determined. Comparison of this sequence with the sequences flanking other 16S and 23S rRNA coding regions (1-4) indicated that large RNA stem structures, surrounding the mature 16S and 23S rRNAs, could form in a precursor rRNA. The 5'-ends of the precursors of 16S and 23S rRNAs (p16S and p23S) were mapped to the middles of these potential RNA stem structures. We propose that the initial cleavages of the primary rRNA transcript occur near the "opposed G's" which interrupt the basepairing of each of these stem structures. This model is supported by the finding that the 5'-end of the 5S rRNA precursor, p5A (5), maps to the region of the "opposed G's" in the 23S rRNA stem structure.

Full text

PDF
6713

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk A. J., Sharp P. A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. doi: 10.1016/0092-8674(77)90272-0. [DOI] [PubMed] [Google Scholar]
  2. Borer P. N., Dengler B., Tinoco I., Jr, Uhlenbeck O. C. Stability of ribonucleic acid double-stranded helices. J Mol Biol. 1974 Jul 15;86(4):843–853. doi: 10.1016/0022-2836(74)90357-x. [DOI] [PubMed] [Google Scholar]
  3. Chilton M. D., McCarthy B. J. Genetic and base sequence homologies in bacillus. Genetics. 1969 Jul;62(3):697–710. [PMC free article] [PubMed] [Google Scholar]
  4. Chow L. T., Davidson N. Electron microscope mapping of the distribution of ribosomal genes of the Bacillus subtilis chromosome. J Mol Biol. 1973 Apr 5;75(2):265–279. doi: 10.1016/0022-2836(73)90020-x. [DOI] [PubMed] [Google Scholar]
  5. Ehrlich S. D., Bursztyn-Pettegrew H., Stroynowski I., Lederberg J. Expression of the thymidylate synthetase gene of the Bacillus subtilis bacteriophage Phi-3-T in Escherichia coli. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4145–4149. doi: 10.1073/pnas.73.11.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gentz R., Langner A., Chang A. C., Cohen S. N., Bujard H. Cloning and analysis of strong promoters is made possible by the downstream placement of a RNA termination signal. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4936–4940. doi: 10.1073/pnas.78.8.4936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hecht N. B., Woese C. R. Separation of bacterial ribosomal ribonucleic acid from its macromolecular precursors by polyacrylamide gel electrophoresis. J Bacteriol. 1968 Mar;95(3):986–990. doi: 10.1128/jb.95.3.986-990.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henckes G., Vannier F., Seiki M., Ogasawara N., Yoshikawa H., Seror-Laurent S. J. Ribosomal RNA genes in the replication origin region of Bacillus subtilis chromosome. Nature. 1982 Sep 16;299(5880):268–271. doi: 10.1038/299268a0. [DOI] [PubMed] [Google Scholar]
  9. Kobayashi H., Osawa S. The number of 5 S rRNA genes in Bacillus subtilis. FEBS Lett. 1982 May 17;141(2):161–163. doi: 10.1016/0014-5793(82)80037-9. [DOI] [PubMed] [Google Scholar]
  10. Loughney K., Lund E., Dahlberg J. E. tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res. 1982 Mar 11;10(5):1607–1624. doi: 10.1093/nar/10.5.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mahler I., Halvorson H. O. Transformation of Escherichia coli and Bacillus subtilis with a hybrid plasmid molecule. J Bacteriol. 1977 Jul;131(1):374–377. doi: 10.1128/jb.131.1.374-377.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  13. Moran C. P., Jr, Bott K. F. Organization of transfer and ribosomal ribonucleic acid genes in Bacillus subtilis. J Bacteriol. 1979 Nov;140(2):742–744. doi: 10.1128/jb.140.2.742-744.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moran C. P., Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet. 1982;186(3):339–346. doi: 10.1007/BF00729452. [DOI] [PubMed] [Google Scholar]
  15. Ogasawara N., Seiki M., Yoshikawa H. Replication origin region of Bacillus subtilis chromosome contains two rRNA operons. J Bacteriol. 1983 Apr;154(1):50–57. doi: 10.1128/jb.154.1.50-57.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oishi M., Sueoka N. Location of genetic loci of ribosomal RNA on Bacillus subtilis chromosome. Proc Natl Acad Sci U S A. 1965 Aug;54(2):483–491. doi: 10.1073/pnas.54.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rice P. W., Dahlberg J. E. A gene between polA and glnA retards growth of Escherichia coli when present in multiple copies: physiological effects of the gene for spot 42 RNA. J Bacteriol. 1982 Dec;152(3):1196–1210. doi: 10.1128/jb.152.3.1196-1210.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sarmientos P., Sylvester J. E., Contente S., Cashel M. Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell. 1983 Apr;32(4):1337–1346. doi: 10.1016/0092-8674(83)90314-8. [DOI] [PubMed] [Google Scholar]
  19. Seiki M., Ogasawara N., Yoshikawa H. Identification of a suppressor sequence for DNA replication in the replication origin region of the Bacillus subtilis chromosome. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4285–4289. doi: 10.1073/pnas.79.14.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seiki M., Ogasawara N., Yoshikawa H. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. I. Isolation and characterization of plasmids containing the origin region. Mol Gen Genet. 1981;183(2):220–226. doi: 10.1007/BF00270621. [DOI] [PubMed] [Google Scholar]
  21. Smith I., Dubnau D., Morrell P., Marmur J. Chromosomal location of DNA base sequences complementary to transfer RNA and to 5 s, 16 s and 23 s ribosomal RNA in Bacillus subtilis. J Mol Biol. 1968 Apr 14;33(1):123–140. doi: 10.1016/0022-2836(68)90285-4. [DOI] [PubMed] [Google Scholar]
  22. Sogin M. L., Pace N. R. Nucleotide sequence of 5 S ribosomal RNA precursor from Bacillus subtilis. J Biol Chem. 1976 Jun 10;251(11):3480–3488. [PubMed] [Google Scholar]
  23. Stewart G. C., Wilson F. E., Bott K. F. Detailed physical mapping of the ribosomal RNA genes of Bacillus subtilis. Gene. 1982 Sep;19(2):153–162. doi: 10.1016/0378-1119(82)90001-4. [DOI] [PubMed] [Google Scholar]
  24. Stiekema W. J., Raué H. A., Planta R. J. Sequence analysis and in vitro maturation of five precursor 5S RNAs from Bacillus Q. Nucleic Acids Res. 1980 May 24;8(10):2193–2211. doi: 10.1093/nar/8.10.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stiekema W. J., de Leede-Twente R., Raué H. A., Planta R. J. Nucleotide sequence analysis of precursor 5S RNA from Bacillus licheniformis. Nucleic Acids Res. 1980 Oct 10;8(19):4535–4541. doi: 10.1093/nar/8.19.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sugiura M., Takanami M. Analysis of the 5'-terminal nucleotide sequences of ribonucleic acids. II. Comparison of the 5'-terminal nucleotide sequences of ribosomal RNA's from different organisms. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1595–1602. doi: 10.1073/pnas.58.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wawrousek E. F., Hansen J. N. Structure and organization of a cluster of sic tRNA genes in the space between tandem ribosomal RNA gene sets in Bacillus subtilis. J Biol Chem. 1983 Jan 10;258(1):291–298. [PubMed] [Google Scholar]
  28. Wilson F. E., Hoch J. A., Bott K. Genetic mapping of a linked cluster of ribosomal ribonucleic acid genes in Bacillus subtilis. J Bacteriol. 1981 Nov;148(2):624–628. doi: 10.1128/jb.148.2.624-628.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Young R. A., Steitz J. A. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3593–3597. doi: 10.1073/pnas.75.8.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zingales B., Colli W. Ribosomal RNA genes in Bacillus subtilis. Evidence for a cotranscription mechanism. Biochim Biophys Acta. 1977 Feb 16;474(4):562–577. doi: 10.1016/0005-2787(77)90076-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES