Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Feb 11;8(3):635–642. doi: 10.1093/nar/8.3.635

Sedimentation of DNA in ethanol-water solutions within the interval of B to A transition.

V N Potaman, Y A Bannikov, L S Shlyachtenko
PMCID: PMC327296  PMID: 7443537

Abstract

Sedimentation of DNA ethanol-water solutions has been studied over the range of ethanol concentrations corresponding to the B to A transition (65-80% ethanol, v/v). High ethanol concentrations (more than 75%) have been found to promote aggregate formation in solution. The molecular weight of DNA under fixed ionic conditions in solution (5x10(-4)M NaCl) has been shown to influence the value of ethanol concentration at which aggregates appear. On the other hand, the fact that DNA molecular weight has not been found to exert any influence on B to A transition curves obtained from CD measurements suggests that the changes observed in DNA CD spectra on adding ethanol to the solution are independent of aggregate formation. The date obtained show that, first, aggregation is not a necessary condition for the DNA transition from the B to the A-conformation and, second, changes in CD spectra of DNA under the influence of ethanol are not related to the process of aggregation.

Full text

PDF
638

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAHMS J., MOMMAERTS W. F. A STUDY OF CONFORMATION OF NUCLEIC ACIDS IN SOLUTION BY MEANS OF CIRCULAR DICHROISM. J Mol Biol. 1964 Oct;10:73–88. doi: 10.1016/s0022-2836(64)80029-2. [DOI] [PubMed] [Google Scholar]
  2. COATES J. H., JORDAN D. O. Deoxypentose nucleic acids. XV. The sedimentation of calf thymus deoxyribonucleic acid in 95 per cent ethanol. Biochim Biophys Acta. 1960 Sep 23;43:214–222. doi: 10.1016/0006-3002(60)90432-7. [DOI] [PubMed] [Google Scholar]
  3. Cohen G., Eisenberg H. Deoxyribonucleate solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers. 1968;6(8):1077–1100. doi: 10.1002/bip.1968.360060805. [DOI] [PubMed] [Google Scholar]
  4. Erfurth S. C., Bond P. J., Peticolas W. L. Characterization of the A in equilibrium B transition of DNA in fibers and gels by laser Raman spectroscopy. Biopolymers. 1975 Jun;14(6):1245–1257. doi: 10.1002/bip.1975.360140613. [DOI] [PubMed] [Google Scholar]
  5. GEIDUSCHEK E. P., HERSKOVITS T. T. Nonaqueous solutions of DNA. Reversible and irreversible denaturation in methanol. Arch Biochem Biophys. 1961 Oct;95:114–129. doi: 10.1016/0003-9861(61)90116-3. [DOI] [PubMed] [Google Scholar]
  6. Girod J. C., Johnson W. C., Jr, Huntington S. K., Maestre M. F. Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry. 1973 Dec 4;12(25):5092–5096. doi: 10.1021/bi00749a011. [DOI] [PubMed] [Google Scholar]
  7. Gratzer W. B., Richards E. G. Evaluation of RNA conformation from circular dichroism and optical rotatory dispersion data. Biopolymers. 1971;10(12):2607–2614. doi: 10.1002/bip.360101220. [DOI] [PubMed] [Google Scholar]
  8. HERSKOVITS T. T., SINGER S. J., GEIDUSCHEK E. P. Nonaqueous solutions of DNA. Denaturation in methanol and ethanol. Arch Biochem Biophys. 1961 Jul;94:99–114. doi: 10.1016/0003-9861(61)90016-9. [DOI] [PubMed] [Google Scholar]
  9. Herbeck R., Yu T. J., Peticolas W. L. Effect of cross-linking on the secondary structure of DNA I. Cross-linking by photodimerization. Biochemistry. 1976 Jun 15;15(12):2656–2660. doi: 10.1021/bi00657a027. [DOI] [PubMed] [Google Scholar]
  10. Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
  11. Lang D. Regular superstructures of purified DNA in ethanolic solutions. J Mol Biol. 1973 Aug 5;78(2):247–254. doi: 10.1016/0022-2836(73)90113-7. [DOI] [PubMed] [Google Scholar]
  12. Maestre M. F. Circular dichroism of DNA films: reversibility studies. J Mol Biol. 1970 Sep 28;52(3):543–556. doi: 10.1016/0022-2836(70)90418-3. [DOI] [PubMed] [Google Scholar]
  13. Massie H. R., Zimm B. H. THE USE OF HOT PHENOL IN PREPARING DNA. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1641–1643. doi: 10.1073/pnas.54.6.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Record M. T., Jr, Woodbury C. P., Inman R. B. Characterization of rodlike RNA fragments. Biopolymers. 1975 Feb;14(2):393–408. doi: 10.1002/bip.1975.360140212. [DOI] [PubMed] [Google Scholar]
  15. Skuratovskii I. Ia, Bartenev V. N. Issledovanie struktury magnievoi i litievoi solei DNK faga T2 metodom difraktsii rentgenovykh luchei. O vozmozhnom mekhanizme uchastiia kationov v strukturnykh prevrashcheniiakh dvuspiral' noi DNK. Mol Biol (Mosk) 1978 Nov-Dec;12(6):1359–1376. [PubMed] [Google Scholar]
  16. Tunis-Schneider M. J., Maestre M. F. Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films--a preliminary study. J Mol Biol. 1970 Sep 28;52(3):521–541. doi: 10.1016/0022-2836(70)90417-1. [DOI] [PubMed] [Google Scholar]
  17. Usatyi A. F., Shlyakhtenko L. S. Melting of DNA in ethanol-water solutions. Biopolymers. 1974 Dec;13(12):2435–2446. doi: 10.1002/bip.1974.360131204. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES