Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Feb 11;8(3):657–671. doi: 10.1093/nar/8.3.657

Mechanism of 3' to 5' exonuclease associated with phage T5-induced DNA polymerase: processiveness and template specificity.

S K Das, R K Fujimura
PMCID: PMC327298  PMID: 6255449

Abstract

T5-induced DNA polymerase has an associated 3' to 5' exonuclease activity. Both single-stranded and duplex DNA are hydrolyzed by this enzyme in a quasi-processive manner. This is indicated by the results of polymer-challenge experiments utilizing product analysis techniques. Due to the quasi-processive mode of hydrolysis, the kinetics of label release from the 3'-terminally labeled oligonucleotide substrates, annealed to complementary homopolymers, show an initial high rate of hydrolysis. In the case of both single-stranded and duplex DNA substrates, hydrolysis seems to continue, at best, up to the point where the enzyme is five or six nucleotides away from the 5-end. The enzyme carries out mismatch repair, as evidenced by experiments with primer molecules containing improper base residues at the 3'-OH terminus. Control experiments with complementary base residues at the 3'-end indicate that extensive removal of terminal residue takes place in the presence of dNTP's only when such residues are "improper" in the Watson-Crick sense.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks G. R., Holloman W. K., Kairis M. V., Spanos A., Yarranton G. T. A DNA polymerase from Ustilago maydis. 1. Purification and properties of the polymerase activity. Eur J Biochem. 1976 Feb 2;62(1):131–142. doi: 10.1111/j.1432-1033.1976.tb10106.x. [DOI] [PubMed] [Google Scholar]
  2. Battula N., Loeb L. A. On the fidelity of DNA replication. Lack of exodeoxyribonuclease activity and error-correcting function in avian myeloblastosis virus DNA polymerase. J Biol Chem. 1976 Feb 25;251(4):982–986. [PubMed] [Google Scholar]
  3. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  4. Byrnes J. J., Black V. L. Comparison of DNA polymerase alpha and delta from bone marrow. Biochemistry. 1978 Oct 3;17(20):4226–4231. doi: 10.1021/bi00613a018. [DOI] [PubMed] [Google Scholar]
  5. Byrnes J. J., Downey K. M., Black V. L., So A. G. A new mammalian DNA polymerase with 3' to 5' exonuclease activity: DNA polymerase delta. Biochemistry. 1976 Jun 29;15(13):2817–2823. doi: 10.1021/bi00658a018. [DOI] [PubMed] [Google Scholar]
  6. Chang L. M. DNA polymerases from bakers' yeast. J Biol Chem. 1977 Mar 25;252(6):1873–1880. [PubMed] [Google Scholar]
  7. Cox E. C. Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet. 1976;10:135–156. doi: 10.1146/annurev.ge.10.120176.001031. [DOI] [PubMed] [Google Scholar]
  8. Das S. K., Fujimura R. K. Exonuclease associated with bacteriophage T5-Induced DNA polymerase. J Virol. 1976 Oct;20(1):70–77. doi: 10.1128/jvi.20.1.70-77.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Das S. K., Fujimura R. K. Mechanism of T5-induced DNA polymerase. I. Replication of short primer templates. J Biol Chem. 1977 Dec 10;252(23):8700–8707. [PubMed] [Google Scholar]
  10. Das S. K., Fujimura R. K. Mechanism of T5-induced DNA polymerase. II. Characterization of the dead-end complex. J Biol Chem. 1977 Dec 10;252(23):8708–8712. [PubMed] [Google Scholar]
  11. Das S. K., Fujimura R. K. Processiveness of DNA polymerases. A comparative study using a simple procedure. J Biol Chem. 1979 Feb 25;254(4):1227–1232. [PubMed] [Google Scholar]
  12. Das S. K. Primer-mediated inhibition of the hydrolysis of template DNA by T5-induced DNA polymerase. Biochem Biophys Res Commun. 1977 Nov 7;79(1):247–253. doi: 10.1016/0006-291x(77)90087-0. [DOI] [PubMed] [Google Scholar]
  13. Fujimura R. K., Roop B. C. Characterization of DNA polymerase induced by bacteriophage T5 with DNA containing single strand breaks. J Biol Chem. 1976 Apr 10;251(7):2168–2174. [PubMed] [Google Scholar]
  14. Fujimura R. K., Roop B. C. Temperature-sensitive DNA polymerase induced by a bacteriophage T5 mutant: relationship between polymerase and exonuclease activities. Biochemistry. 1976 Oct 5;15(20):4403–4409. doi: 10.1021/bi00665a009. [DOI] [PubMed] [Google Scholar]
  15. Goulian M., Lucas Z. J., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXV. Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage T4. J Biol Chem. 1968 Feb 10;243(3):627–638. [PubMed] [Google Scholar]
  16. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  17. Low R. L., Rashbaum S. A., Cozzarelli N. R. Purification and characterization of DNA polymerase III from Bacillus subtilis. J Biol Chem. 1976 Mar 10;251(5):1311–1325. [PubMed] [Google Scholar]
  18. Nossal N. G., Hershfield M. S. Nuclease activity in a fragment of bacteriophage T4 deoxyribonucleic acid polymerase induced by the amber mutant am B22. J Biol Chem. 1971 Sep 10;246(17):5414–5426. [PubMed] [Google Scholar]
  19. Nossal N. G., Singer M. F. The processive degradation of individual polyribonucleotide chains. I. Escherichia coli ribonuclease II. J Biol Chem. 1968 Mar 10;243(5):913–922. [PubMed] [Google Scholar]
  20. Richardson C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci U S A. 1965 Jul;54(1):158–165. doi: 10.1073/pnas.54.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomas K. R., Olivera B. M. Processivity of DNA exonucleases. J Biol Chem. 1978 Jan 25;253(2):424–429. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES