Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Oct 24;9(20):5469–5482. doi: 10.1093/nar/9.20.5469

Determination of DNA cooperativity factor.

B R Amirikyan, A V Vologodskii, Lyubchenko YuL
PMCID: PMC327533  PMID: 7029470

Abstract

The paper presents measurements of the difference in the melting temperature of a colE1 DNA region when it is located inside the DNA helix and at its end. A direct comparison of calculations based on the rigorous theory of helix-coil transition with experimental data for .2 M Na+ (the conditions for fully reversible melting) yielded the value of 2.5-5x10(-5) for the cooperatively factor sigma. We discuss the reversibility of DNA melting and the possibility of applying the "all-or-nothing" concept to the melting of DNA regions.

Full text

PDF
5469

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azbel M. Y. DNA sequencing and helix-coil transition. III. DNA sequencing. Biopolymers. 1980 Jan;19(1):95–109. doi: 10.1002/bip.1980.360190107. [DOI] [PubMed] [Google Scholar]
  2. Azbel M. Y. DNA sequencing and melting curve. Proc Natl Acad Sci U S A. 1979 Jan;76(1):101–105. doi: 10.1073/pnas.76.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borovik A. S., Kalambet Y. A., Lyubchenko Y. L., Shitov V. T., Golovanov E. I. Equilibrium melting of plasmid ColE1 DNA: electron-microscopic visualization. Nucleic Acids Res. 1980 Sep 25;8(18):4165–4184. doi: 10.1093/nar/8.18.4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fixman M., Freire J. J. Theory of DNA melting curves. Biopolymers. 1977 Dec;16(12):2693–2704. doi: 10.1002/bip.1977.360161209. [DOI] [PubMed] [Google Scholar]
  5. Frank-Kamenetskii F. Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers. 1971;10(12):2623–2624. doi: 10.1002/bip.360101223. [DOI] [PubMed] [Google Scholar]
  6. Gruenwedel D. W. Salt effects on the denaturation of DNA. 3. A calorimetric investigation of the transition enthalpy of calf thymus DNA in Na2SO4 solutions of varying ionic strength. Biochim Biophys Acta. 1974 Feb 27;340(1):16–30. doi: 10.1016/0005-2787(74)90170-1. [DOI] [PubMed] [Google Scholar]
  7. Gruenwedel D. W. Salt effects on the denaturation of DNA. IV. A calorimetric study of the helix-coil conversion of the alternating copolymer poly[d(A-T)]. Biochim Biophys Acta. 1975 Jul 7;395(3):246–257. doi: 10.1016/0005-2787(75)90195-1. [DOI] [PubMed] [Google Scholar]
  8. Oka A., Nomura N., Morita M., Sugisaki H., Sugimoto K., Takanami M. Nucleotide sequence of small ColE1 derivatives: structure of the regions essential for autonomous replication and colicin E1 immunity. Mol Gen Genet. 1979 May 4;172(2):151–159. doi: 10.1007/BF00268276. [DOI] [PubMed] [Google Scholar]
  9. Oliver A. L., Wartell R. M., Ratliff R. L. Helix coil transitions of d(A)n-d(T)n, d(A-T)n-d(A-T)n, and d(A-A-T)n-d(A-T-T)n; evaluation of parameters governing DNA stability. Biopolymers. 1977 May;16(5):1115–1137. doi: 10.1002/bip.1977.360160512. [DOI] [PubMed] [Google Scholar]
  10. Perelroyzen M. P., Lyamichev V. I., Kalambet YuA, Lyubchenko YuL, Vologodskii A. V. A study of the reversibility of helix-coil transition in DNA. Nucleic Acids Res. 1981 Aug 25;9(16):4043–4059. doi: 10.1093/nar/9.16.4043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wada A., Yabuki S., Husimi Y. Fine structure in the thermal denaturation of DNA: high temperature-resolution spectrophotometric studies. CRC Crit Rev Biochem. 1980;9(2):87–144. doi: 10.3109/10409238009105432. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES