Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Aug 11;19(15):4103–4108. doi: 10.1093/nar/19.15.4103

8-Methyladenosine-substituted analogues of 2-5A: synthesis and their biological activities.

Y Kitade 1, Y Nakata 1, K Hirota 1, Y Maki 1, A Pabuccuoglu 1, P F Torrence 1
PMCID: PMC328547  PMID: 1714563

Abstract

8-Methyladenosine-substituted analogues of 2-5A, p5'A2'p5'A2'p5'(me8A), p5'A2'p5'(me8A)2'p5'(me8A), p5'(me8A)2'p5'(me8A)2'p5'(me8A), and p5'(me8A) 2'p5'A2'p5'A, were prepared via a modification of a lead ion-catalyzed ligation reaction. These 2-5A monophosphates were converted into the corresponding 5'-triphosphates. Substitution of an 8-methyladenosine residue at the third position (2'-terminus) of the oligonucleotides increased the stability to snake venom phosphodiesterase digestion. Both binding and activation of mouse liver 2-5A dependent ribonuclease (RNase L) by the various 8-methyladenosine-substituted 2-5A analogues were examined. Among the 8-methyladenosine-substituted trimer analogues, the analogues with 8-methyladenosine residing in the 2'-terminal position showed the strongest binding affinity and were several times more effective than 2-5A itself as an inhibitor of translation.

Full text

PDF
4108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Imai J., Lesiak K., Torrence P. F. Respective role of each of the purine N-6 amino groups of 5'-O-triphosphoryladenylyl(2'----5')adenylyl(2----5')adenosine in binding to and activation of RNase L. J Biol Chem. 1985 Feb 10;260(3):1390–1393. [PubMed] [Google Scholar]
  2. Kanou M., Ohomori H., Takaku H., Yokoyama S., Kawai G., Suhadolnik R. J., Sobol R., Jr Chemical synthesis and biological activities of analogues of 2',5'-oligoadenylates containing 8-substituted adenosine derivatives. Nucleic Acids Res. 1990 Aug 11;18(15):4439–4446. doi: 10.1093/nar/18.15.4439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Knight M., Wreschner D. H., Silverman R. H., Kerr I. M. Radioimmune and radiobinding assays for A2'p5'A2'p5'A, pppA2'p5'A, and related oligonucleotides. Methods Enzymol. 1981;79(Pt B):216–227. [PubMed] [Google Scholar]
  5. Lesiak K., Torrence P. F. Purine 8-bromination modulates the ribonuclease L binding and activation abilities of 2',5'-oligoadenylates. Possible influence of glycosyl torsion angle. J Biol Chem. 1987 Feb 15;262(5):1961–1965. [PubMed] [Google Scholar]
  6. Lesiak K., Torrence P. F. Synthesis and biological activities of oligo(8-bromoadenylates) as analogues of 5'-O-triphosphoadenylyl(2'----5')adenylyl(2'----5')adenosine. J Med Chem. 1986 Jun;29(6):1015–1022. doi: 10.1021/jm00156a020. [DOI] [PubMed] [Google Scholar]
  7. Nolan-Sorden N. L., Lesiak K., Bayard B., Torrence P. F., Silverman R. H. Photochemical crosslinking in oligonucleotide-protein complexes between a bromine-substituted 2-5A analog and 2-5A-dependent RNase by ultraviolet lamp or laser. Anal Biochem. 1990 Feb 1;184(2):298–304. doi: 10.1016/0003-2697(90)90684-2. [DOI] [PubMed] [Google Scholar]
  8. Silverman R. H. Functional analysis of 2-5A-dependent RNase and 2-5a using 2',5'-oligoadenylate-cellulose. Anal Biochem. 1985 Feb 1;144(2):450–460. doi: 10.1016/0003-2697(85)90141-1. [DOI] [PubMed] [Google Scholar]
  9. Silverman R. H., Jung D. D., Nolan-Sorden N. L., Dieffenbach C. W., Kedar V. P., SenGupta D. N. Purification and analysis of murine 2-5A-dependent RNase. J Biol Chem. 1988 May 25;263(15):7336–7341. [PubMed] [Google Scholar]
  10. Torrence P. F., Brozda D., Alster D., Charubala R., Pfleiderer W. Only one 3'-hydroxyl group of ppp5' A2'p5'A2'p5' A (2-5A) is required for activation of the 2-5A-dependent endonuclease. J Biol Chem. 1988 Jan 25;263(3):1131–1139. [PubMed] [Google Scholar]
  11. Torrence P. F., Friedman R. M. Are double-stranded RNA-directed inhibition of protein synthesis in interferon-treated cells and interferon induction related phenomena? J Biol Chem. 1979 Feb 25;254(4):1259–1267. [PubMed] [Google Scholar]
  12. Torrence P. F., Imai J., Lesiak K., Jamoulle J. C., Sawai H. Oligonucleotide structural parameters that influence binding of 5'-O-triphosphoadenylyl-(2'----5')-adenylyl-(2'----5')-adenosine to the 5'-O-triphosphoadenylyl-(2'----5')-adenylyl-(2'----5')-adenosine dependent endoribonuclease: chain length, phosphorylation state, and heterocyclic base. J Med Chem. 1984 Jun;27(6):726–733. doi: 10.1021/jm00372a004. [DOI] [PubMed] [Google Scholar]
  13. van den Hoogen Y. T., Hilgersom C. M., Brozda D., Lesiak K., Torrence P. F., Altona C. Conformational analysis of brominated pA2'-5'A2'-5'A analogs. An NMR and model-building study. Eur J Biochem. 1989 Jul 1;182(3):629–637. doi: 10.1111/j.1432-1033.1989.tb14872.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES