Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Aug 11;19(15):4199–4201. doi: 10.1093/nar/19.15.4199

Interaction of ribo- and deoxyriboanalogs of yeast tRNA(Phe) anticodon arm with programmed small ribosomal subunits of Escherichia coli and rabbit liver.

O V Koval'chuke 1, A P Potapov 1, A V El'skaya 1, V K Potapov 1, N F Krinetskaya 1, N G Dolinnaya 1, Z A Shabarova 1
PMCID: PMC328562  PMID: 1870974

Abstract

A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.

Full text

PDF
4200

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clore G. M., Gronenborn A. M., Piper E. A., McLaughlin L. W., Graeser E., van Boom J. H. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Biochem J. 1984 Aug 1;221(3):737–751. doi: 10.1042/bj2210737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Falvey A. K., Staehelin T. Structure and function of mammalian ribosomes. I. Isolation and characterization of active liver ribosomal subunits. J Mol Biol. 1970 Oct 14;53(1):1–19. doi: 10.1016/0022-2836(70)90042-2. [DOI] [PubMed] [Google Scholar]
  3. Hilbers C. W., Haasnoot C. A., de Bruin S. H., Joordens J. J., van der Marel G. A., van Boom J. H. Hairpin formation in synthetic oligonucleotides. Biochimie. 1985 Jul-Aug;67(7-8):685–695. doi: 10.1016/s0300-9084(85)80156-5. [DOI] [PubMed] [Google Scholar]
  4. Khan A. S., Roe B. A. Aminoacylation of synthetic DNAs corresponding to Escherichia coli phenylalanine and lysine tRNAs. Science. 1988 Jul 1;241(4861):74–79. doi: 10.1126/science.2455342. [DOI] [PubMed] [Google Scholar]
  5. Labuda D., Pörschke D. Magnesium ion inner sphere complex in the anticodon loop of phenylalanine transfer ribonucleic acid. Biochemistry. 1982 Jan 5;21(1):49–53. doi: 10.1021/bi00530a009. [DOI] [PubMed] [Google Scholar]
  6. McCarthy B. J., Holland J. J. Denatured DNA as a direct template for in vitro protein synthesis. Proc Natl Acad Sci U S A. 1965 Sep;54(3):880–886. doi: 10.1073/pnas.54.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Morgan A. R., Wells R. D., Khorana H. G. Studies on polynucleotides. LXXIV. Direct translation in vitro of single-stranded DNA-like polymers with repeating nucleotide sequences in the presence of neomycin B. J Mol Biol. 1967 Jun 28;26(3):477–497. doi: 10.1016/0022-2836(67)90316-6. [DOI] [PubMed] [Google Scholar]
  8. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  9. Potapov A. P. A stereospecific mechanism for the aminoacyl-tRNA selection at the ribosome. FEBS Lett. 1982 Sep 6;146(1):5–8. doi: 10.1016/0014-5793(82)80693-5. [DOI] [PubMed] [Google Scholar]
  10. Potapov A. P., Groisman I. S., El'skaya A. V. Correlation between poly(U) misreading and poly(dT) translation efficiency in E coli cell-free systems. Biochimie. 1990 May;72(5):345–349. doi: 10.1016/0300-9084(90)90030-k. [DOI] [PubMed] [Google Scholar]
  11. Potapov A. P. Mekhanizm stereospetsificheskoi stabilizatsii kodon-antikodonnykh kompleksov na ribosomakh v khode transliatsii. Zh Obshch Biol. 1985 Jan-Feb;46(1):63–77. [PubMed] [Google Scholar]
  12. Potapov A. P., Soldatkin K. A., Soldatkin A. P., El'skaya A. V. The role of a template sugar-phosphate backbone in the ribosomal decoding mechanism. Comparative study of poly(U) and poly(dT) template activity. J Mol Biol. 1988 Oct 20;203(4):885–893. doi: 10.1016/0022-2836(88)90114-3. [DOI] [PubMed] [Google Scholar]
  13. Rigler R., Wintermeyer W. Dynamics of tRNA. Annu Rev Biophys Bioeng. 1983;12:475–505. doi: 10.1146/annurev.bb.12.060183.002355. [DOI] [PubMed] [Google Scholar]
  14. Rose S. J., 3rd, Lowary P. T., Uhlenbeck O. C. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes. J Mol Biol. 1983 Jun 15;167(1):103–117. doi: 10.1016/s0022-2836(83)80036-9. [DOI] [PubMed] [Google Scholar]
  15. Striker G., Labuda D., Vega-Martin M. C. The three conformations of the anticodon loop of yeast tRNA(Phe). J Biomol Struct Dyn. 1989 Oct;7(2):235–255. doi: 10.1080/07391102.1989.10507768. [DOI] [PubMed] [Google Scholar]
  16. Wemmer D. E., Chou S. H., Hare D. R., Reid B. R. Duplex-hairpin transitions in DNA: NMR studies on CGCGTATACGCG. Nucleic Acids Res. 1985 May 24;13(10):3755–3772. doi: 10.1093/nar/13.10.3755. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES