Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Oct 11;19(19):5403–5408. doi: 10.1093/nar/19.19.5403

The core element of the EcoRII methylase as defined by protease digestion and deletion analysis.

S Friedman 1, S Som 1, L F Yang 1
PMCID: PMC328905  PMID: 1923825

Abstract

Binding of the EcoRII DNA methyltransferase to azacytosine-containing DNA protects the enzyme from digestion by proteases. The limit digest yields a product having a Mr on SDS-PAGE 20% less than the intact protein. The N terminus of the tryptic digestion product was sequenced and found to be missing the N terminal 82 amino acids. Under the conditions used unbound enzyme was digested to small peptides. Protection of the enzyme from protease digestion implies that the enzyme undergoes major conformational changes when bound to DNA. The trypsin sensitive region of the EcoRII methyltransferase occurs prior to the first constant region shared with other procaryotic DNA(cytosine-5)methyltransferases. To determine if this region played a role in substrate binding or specificity, N-terminal deletion mutants were studied. Deletion of 97 amino acids resulted in a decrease of enzyme activity. Further deletions caused a complete loss of activity. Enzyme deleted through amino acid 85 was purified and found to have the same specificity as wild type however there was an increase in Km for both S-adenosylmethionine (AdoMet) and DNA of 27 and 18 fold respectively. The N-terminus of the EcoRII methylase, although a variable region present in many procaryotic DNA(cytosine-5)methylases, plays no role in determining enzyme specificity, although it does contribute to the interaction with both AdoMet and DNA.

Full text

PDF
5403

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Friedman S. Binding of the EcoRII methylase to azacytosine-containing DNA. Nucleic Acids Res. 1986 Jun 11;14(11):4543–4556. doi: 10.1093/nar/14.11.4543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Friedman S. The inhibition of DNA(cytosine-5)methylases by 5-azacytidine. The effect of azacytosine-containing DNA. Mol Pharmacol. 1981 Mar;19(2):314–320. [PubMed] [Google Scholar]
  3. Friedman S. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases. J Biol Chem. 1985 May 10;260(9):5698–5705. [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Lauster R., Trautner T. A., Noyer-Weidner M. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol. 1989 Mar 20;206(2):305–312. doi: 10.1016/0022-2836(89)90480-4. [DOI] [PubMed] [Google Scholar]
  6. Pósfai J., Bhagwat A. S., Pósfai G., Roberts R. J. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. doi: 10.1093/nar/17.7.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Santi D. V., Norment A., Garrett C. E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6993–6997. doi: 10.1073/pnas.81.22.6993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Som S., Bhagwat A. S., Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987 Jan 12;15(1):313–332. doi: 10.1093/nar/15.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Som S., Friedman S. Identification of a highly conserved domain in the EcoRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. Evidence for UV-induced transmethylation of cysteine 186. J Biol Chem. 1991 Feb 15;266(5):2937–2945. [PubMed] [Google Scholar]
  11. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wilke K., Rauhut E., Noyer-Weidner M., Lauster R., Pawlek B., Behrens B., Trautner T. A. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 1988 Aug;7(8):2601–2609. doi: 10.1002/j.1460-2075.1988.tb03110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES